Successful in vitro maturation (IVM) of immature oocytes and pregnancy: an attempt of frozen-thawed embryos transfer in hormone replacement cycle for synchronization.

2001 ◽  
Vol 76 (3) ◽  
pp. S113
Author(s):  
K Kyono ◽  
N Fukunaga ◽  
K Haigo ◽  
S Chiba ◽  
S Kato
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
María del Carmen Nogales ◽  
María Cruz ◽  
Silvia de Frutos ◽  
Eva María Martínez ◽  
María Gaytán ◽  
...  

Abstract Background The goal of this study was to investigate which factors, excluding embryo aneuploidies, are associated with miscarriage in patients who have undergone a single euploid blastocyst transfer. Methods Retrospective, observational and multicenter study with 2832 patients undergoing preimplantational genetic testing for aneuploidies (PGT-A) due to repeated implantation failure, recurrent pregnancy loss, advanced maternal age or severe male factor were transferred one single euploid embryo. Results One of the main findings was a significant relationship between body mass index (BMI) and miscarriage rates (13.4% in underweight women, 12.1% in normal weight, 14.5% in overweight, and 19.2% in obese women, odds ratio [OD] 1.04; 95% confidence interval [CI], 1.01–1.07 p = 0.006). Endometrial thickness (OD 0.65; 95%, 0.52–0.77 p = 0.04) and type of endometrial preparation (natural cycle or hormone replacement cycle) (OD 0.77; 95%, 0.52–0.77, p = 0.04) were also associated with miscarriage rates. Conclusions BMI was strongly associated to miscarriage rates. We also observed a weaker association with endometrial thickness and with the type of endometrial preparation (natural cycle or hormone replacement cycle). None of the other studied variables (biopsy day, maternal and male age, duration of infertility, cycle length, previous miscarriages, previous live births, previous In Vitro Fertilization (IVF) cycles, endometrial pattern and/or diagnosis) were associated with miscarriage rates.


2014 ◽  
Vol 29 (1) ◽  
pp. 1-5
Author(s):  
Junchul David Yoon ◽  
Eun-hye Kim ◽  
Seon-Ung Hwang ◽  
Lian Cai ◽  
Sang-Hwan Hyun

2008 ◽  
Vol 20 (1) ◽  
pp. 116
Author(s):  
L. G. Devito ◽  
C. B. Fernandes ◽  
H. N. Ferreira ◽  
F. C. Landim-Alvarenga

The cryopreservation process aims to keep the cellular metabolism in a quiescent state for an indeterminate length of time. In mammals, oocyte cryopreservation success is important for the establishment of genetic banks. The objective of the present experiment was to evaluate the effect of vitrification on oocyte meiotic ability and the integrity of the metaphase plate in immature and in vitro-matured bovine oocytes. Bovine cumulus–oocytes complexes (COCs) were harvested from slaughterhouse ovaries and randomly divided into 3 groups: (G1) non-vitrified oocytes subjected to in vitro maturation, (G2) immature oocytes vitrified and then subjected to in vitro maturation after warming, and (G3) in vitro-matured oocytes subjected to vitrification. For in vitro maturation, oocytes were incubated for 22 h in 5% CO2 in air in TCM-199 with fetal calf serum, estradiol, LH, FSH, pyruvate, and gentamicin. For vitrification, the oocytes were exposed to the cryoprotectors in three steps: solution 1 containing 1.4 m glycerol in PBS for five min, and then solution 2 containing 1.4 m glycerol and 3.6 m ethylene glycol in PBS for another five min. After exposure to the second solution, the oocytes were transferred to 30-µL drops of solution 3 containing 3.4 m glycerol and 4.6 m ethylene glycol, loaded (5 oocytes per straw) in less than 1 min into 0.25-mL straws between two columns of 0.5 m galactose in PBS separated by two air bubbles, and immediately set in liquid nitrogen vapor. After 1 min of equilibration in liquid nitrogen vapor, the straws were immersed in liquid nitrogen. Warming was performed by holding the straws for 10 s in air, followed by 10 more s in a water bath at 20–22�C. The straws were then shaken 5 to 8 times to mix the bubbles (movement similar to that for a thermometer) and left horizontally for 6 to 8 min at room temperature. The rates of metaphase II and degeneration were analyzed by ANOVA followed by the Student t-test. The oocytes were stained with 100 µg mL–1 Hoechst 33342 and examined in an inverted microscope equipped with fluorescent light (UV filters 535 and 617 mm). Three different routines were realized with a total of 90 oocytes per group. The metaphase II rates in G1 (48/90, 53.3%) and G3 (42/90, 46.6%) were statistically the same (P e 0.05), but were higher (P d 0.05) than in G2 (0/90, 0%). The degeneration rates were: G1 (18/90, 20%), G2 (77/90, 85.6%), and G3 (7/90, 7.8%). The vitrification procedure damaged mainly the immature oocytes, since in the G2 the degeneration rate was higher and the oocytes were not able to resume meiosis. Meanwhile, when oocytes were vitrified after in vitro maturation, the metaphase II rate was similar to the one observed in IVM oocytes not subjected to vitrification. This indicates that the vitrification procedure performed in this experiment did not damage the structure of the metaphase II plate. However, more studies are necessary to predict the developmental potential of these in vitro-matured oocytes.


Sign in / Sign up

Export Citation Format

Share Document