Ultrarapid detection of sex chromosomes with the use of fluorescence in situ hybridization with direct label dna probes in single human blastomeres, spermatozoa, amniocytes, and lymphocytes

1998 ◽  
Vol 70 (5) ◽  
pp. 927-932 ◽  
Author(s):  
Jiaen Liu ◽  
Xue-Zhong Zheng ◽  
Theodore A Baramki ◽  
Ricardo A Yazigi ◽  
Gail Compton ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1819
Author(s):  
Tatyana Karamysheva ◽  
Svetlana Romanenko ◽  
Alexey Makunin ◽  
Marija Rajičić ◽  
Alexey Bogdanov ◽  
...  

The gene composition, function and evolution of B-chromosomes (Bs) have been actively discussed in recent years. However, the additional genomic elements are still enigmatic. One of Bs mysteries is their spatial organization in the interphase nucleus. It is known that heterochromatic compartments are not randomly localized in a nucleus. The purpose of this work was to study the organization and three-dimensional spatial arrangement of Bs in the interphase nucleus. Using microdissection of Bs and autosome centromeric heterochromatic regions of the yellow-necked mouse (Apodemus flavicollis) we obtained DNA probes for further two-dimensional (2D)- and three-dimensional (3D)- fluorescence in situ hybridization (FISH) studies. Simultaneous in situ hybridization of obtained here B-specific DNA probes and autosomal C-positive pericentromeric region-specific probes further corroborated the previously stated hypothesis about the pseudoautosomal origin of the additional chromosomes of this species. Analysis of the spatial organization of the Bs demonstrated the peripheral location of B-specific chromatin within the interphase nucleus and feasible contact with the nuclear envelope (similarly to pericentromeric regions of autosomes and sex chromosomes). It is assumed that such interaction is essential for the regulation of nuclear architecture. It also points out that Bs may follow the same mechanism as sex chromosomes to avoid a meiotic checkpoint.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2106
Author(s):  
Barbara Kij-Mitka ◽  
Halina Cernohorska ◽  
Svatava Kubickova ◽  
Sylwia Prochowska ◽  
Wojciech Niżański ◽  
...  

Fluorescence in situ hybridization is a molecular cytogenetics technique that enables the visualization of chromosomes in cells via fluorescently labeled molecular probes specific to selected chromosomes. Despite difficulties in carrying out the FISH technique on sperm, related to the need for proper nuclear chromatin decondensation, this technique has already been used to visualize chromosomes in human, mouse, cattle, swine, horse, and dog spermatozoa. Until now, FISH has not been performed on domestic cat sperm; therefore, the aim of this study was to visualize sex chromosomes in domestic cat sperm. The results showed the presence of X and Y chromosomes in feline spermatozoa. The procedure used for sperm decondensation and fluorescence in situ hybridization was adequate to visualize chromosomes in domestic cat spermatozoa and, in the future, it may be used to determine the degree of chromosomal abnormalities in these gametes.


BioTechniques ◽  
1999 ◽  
Vol 26 (6) ◽  
pp. 1068-1072
Author(s):  
Allen T. Christian ◽  
Holly E. Garcia ◽  
James D. Tucker

2003 ◽  
Vol 51 (4) ◽  
pp. 549-551 ◽  
Author(s):  
Anja Weise ◽  
Peter Harbarth ◽  
Uwe Claussen ◽  
Thomas Liehr

Fluorescence in situ hybridization (FISH) on human chromosomes in meta-and interphase is a well-established technique in clinical and tumor cytogenetics and for studies of evolution and interphase architecture. Many different protocols for labeling the DNA probes used for FISH have been published. Here we describe for the first time the successful use of Photoprobe biotin-labeled DNA probes in FISH experiments. Yeast artificial chromosome (YAC) and whole chromosome painting (wcp) probes were tested.


Reproduction ◽  
2003 ◽  
pp. 317-325 ◽  
Author(s):  
I Parrilla ◽  
JM Vazquez ◽  
M Oliver-Bonet ◽  
J Navarro ◽  
J Yelamos ◽  
...  

Successful evaluation of X- and Y-chromosome-bearing sperm separation technology using flow cytometry-cell sorter is of great importance. Fluorescence in situ hybridization (FISH), which allows for the detection of specific nucleic acid sequences on morphologically preserved spermatozoa, is an ideal method for quantitatively and qualitatively assessing the purity of sorted sperm samples. In this study specific pig DNA direct probes for small regions of chromosomes 1 and Y were used. Chromosome 1 was labelled in green and used as internal control to detect a lack of hybridization, whereas chromosome Y was labelled in red. Nick translation was used as the labelling method for the preparation of these probes. Spermatozoa, unsorted and sorted for high and low Y-chromosome purity from ejaculates of five boars, were fixed on slides and two-colour direct FISH was performed for chromosomes 1 and Y. About 500 non-sorted and 200 sorted spermatozoa per sample were scored. The proportion of Y-chromosome-bearing spermatozoa was determined by the presence of a red fluorescent signal on the sperm head and the proportion of X-chromosome-bearing spermatozoa was determined by subtraction. The efficiency of the hybridization procedure was established as near 98% on sorted and unsorted samples. The results of this study confirm that direct FISH using specific pig DNA probes labelled by nick translation provides a useful tool for laboratory validation of sperm separation by flow sorting technology. Moreover, the ease of nick translation and the quality of the fluorescent signal obtained using this method makes this procedure the most appropriate method for labelling pig DNA probes to be used for direct FISH on pig spermatozoa.


1994 ◽  
Vol 42 (7) ◽  
pp. 961-966 ◽  
Author(s):  
E J Speel ◽  
J Herbergs ◽  
F C Ramaekers ◽  
A H Hopman

We describe the development and application of a sensitive high-resolution fluorescence alkaline phosphatase (APase)-Fast Red immunocytochemical (ICC) staining method in combination with fluorescence in situ hybridization (ISH) and bromodeoxyuridine (BrdU) detection. The high fluorescence intensity, accurate localization, and advantageous slow-fading properties make the APase-Fast Red reaction a valuable tool for detection of antigens or specific DNA probes in biological cell preparations. Since the enzyme precipitate proved to be resistant to enzymatic pre-treatment steps and stable during the entire ISH procedure, APase-Fast Red immunostaining could be combined with subsequent visualization of DNA target sequences by fluorescence ISH. The lung cancer cell lines NCI-H82 and EPLC 65 were used as a model system for simultaneous detection of cell proteins, such as the neural cell adhesion molecule (N-CAM), cytokeratin filaments, lamin or the Ki67 antigen (Ki67-Ag), and centromere-specific DNA probes for human chromosomes 1, 7, or 17. In addition, the combined ICC/ISH procedure could be extended with the immunodetection of BrdU incorporated by tumor cells in S-phase. As a consequence, a combined ICC/ISH/BrdU detection procedure is now available that enables analysis of relatively complex tumor populations on the basis of different ICC and genetic markers as well as proliferative activity.


Sign in / Sign up

Export Citation Format

Share Document