Metabolism of Ageing Seed: Glutamic Acid Decarboxylase and Succinic Semialdehyde Dehydrogenase Activity of Aged Wheat Embryos

1978 ◽  
Vol 173 (2) ◽  
pp. 160-166 ◽  
Author(s):  
L. Galleschi ◽  
C. Floris
1960 ◽  
Vol 35 (1) ◽  
pp. 68-71 ◽  
Author(s):  
Yu-Yen Cheng ◽  
Pekka Linko ◽  
Max Milner

Author(s):  
Phillip L. Pearl ◽  
William P. Welch

The pediatric neurotransmitter disorders represent an enlarging group of neurological syndromes characterized by inherited abnormalities of neurotransmitter synthesis, metabolism, and transport. Disorders involving monoamine synthesis include guanosine triphosphate cyclohydrolase deficiency (Segawa disease or classical Dopa-responsive dystonia as the heterozygous form), aromatic amino acid decarboxylase deficiency, tyrosine hydrolase deficiency, sepiapterin reductase deficiency, and disorders of tetrahydrobiopterin synthesis. These disorders can be classified according to whether they feature elevated serum levels of phenylalanine. Disorders of γ-amino butyric acid (GABA) metabolism include succinic semialdehyde dehydrogenase deficiency and GABA-transaminase deficiency. Glycine encephalopathy is typically manifested by refractory neonatal seizures due to a defect in the glycine degradative pathway. Pyridoxine-responsive seizures have now been associated with deficiency of α-aminoadipic semialdehyde dehydrogenase as well as a variants requiring therapy with pyridoxal-5-phosphate and folinic acid.


2005 ◽  
Vol 20 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Boyu Zhang ◽  
Yanbo Yuan ◽  
Yanbin Jia ◽  
Xin Yu ◽  
Qi Xu ◽  
...  

AbstractDysfunctions of glutamatergic and GABAergic neurotransmission are two important hypotheses for the pathogenesis of schizophrenia. Thus, genes in the pathway are candidates for schizophrenia susceptibility. Phosphate-activated glutaminase (GLS), glutamine synthetase (GLUL), glutamic acid decarboxylase (GAD), GABA transaminase (ABAT) and succinic semialdehyde dehydrogenase (ALDH5A1) are five primary enzymes in glutamate and GABA synthetic and degradative pathway. In order to investigate the possible involvement of these genes in the development of paranoid schizophrenia, we genotyped 80 paranoid schizophrenics from northern China and 108 matched controls by polymerase chain reaction (PCR) and restriction fragment length polymorphisms (RFLP) methods or directly sequencing of PCR product. Seven SNPs were found to be polymorphic in the population investigated. No significant differences in the genotype distributions or allele frequencies between patients and controls were found. Therefore, we conclude the polymorphisms studied in the five genes do not play major roles in pathogenesis of paranoid schizophrenia in the population investigated.


2021 ◽  
Vol 25 (04) ◽  
pp. 786-794
Author(s):  
Mengyuan Jin

To reveal the key enzyme genes involved in γ-aminobutyric acid (GABA) metabolic pathways response to elevated metabolite storage in embryos during barley germination, this study investigated the GABA content, cloned GABA metabolic pathway genes and analyzed their expression levels, respectively. In barley embryos, GABA content continued to rise during the soaking process and then decreased after the germination. Three genes including glutamic acid decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) involved in the GABA pathway were cloned and characterized from the barley embryos, respectively. Before the germination, the expression of GAD gene was up-regulated, while GABA-T gene expression was down-regulated. After the germination, GAD gene expression was lowered, but GABA-T gene expression was rapidly increased. The SSADH gene expression remained stable after soaking of 4 h, and then down-regulated. There is evidence that the high GABA content in germinating barley seeds is parallel with the upregulation of the GAD gene, and down-regulation of GABA-T gene. These results indicate that the expression level of the genes involved in GABA pathway is a crucial factor in GABA accumulation during soaking and germination. This study is beneficial for the development of GABA-rich barley products by germination. © 2021 Friends Science Publishers


1984 ◽  
Vol 142 (4) ◽  
pp. 257-259 ◽  
Author(s):  
K. M. Gibson ◽  
L. Sweetman ◽  
W. L. Nyhan ◽  
G. Lenon ◽  
P. Divry

Sign in / Sign up

Export Citation Format

Share Document