Selective role of vagal and non-vagal innervation in control of migrating motor complex (MMC) and postprandial motility

2000 ◽  
Vol 118 (4) ◽  
pp. A1050
Author(s):  
Toshiyuki Tanaka ◽  
Luke H. VanKlompenberg ◽  
Michael G. Sarr
2010 ◽  
Vol 299 (1) ◽  
pp. G144-G157 ◽  
Author(s):  
Eamonn J. Dickson ◽  
Dante J. Heredia ◽  
Terence K. Smith

The colonic migrating motor complex (CMMC) is necessary for fecal pellet propulsion in the murine colon. We have previously shown that 5-hydroxytryptamine (5-HT) released from enterochromaffin cells activates 5-HT3 receptors on the mucosal processes of myenteric Dogiel type II neurons to initiate the events underlying the CMMC. Our aims were to further investigate the roles of 5-HT1A, 5-HT3, and 5-HT7 receptor subtypes in generating and propagating the CMMC using intracellular microelectrodes or tension recordings from the circular muscle (CM) in preparations with and without the mucosa. Spontaneous CMMCs were recorded from the CM in isolated murine colons but not in preparations without the mucosa. In mucosaless preparations, ondansetron (3 μM; 5-HT3 antagonist) plus hexamethonium (100 μM) completely blocked spontaneous inhibitory junction potentials, depolarized the CM. Ondansetron blocked the preceding hyperpolarization associated with a CMMC. Spontaneous CMMCs and CMMCs evoked by spritzing 5-HT (10 and 100 μM) or nerve stimulation in preparations without the mucosa were blocked by SB 258719 or SB 269970 (1–5 μM; 5-HT7 antagonists). Both NAN-190 and (S)-WAY100135 (1–5 μM; 5-HT1A antagonists) blocked spontaneous CMMCs and neurally evoked CMMCs in preparations without the mucosa. Both NAN-190 and (S)-WAY100135 caused an atropine-sensitive depolarization of the CM. The precursor of 5-HT, 5-hydroxytryptophan (5-HTP) (10 μM), and 5-carboxamidotryptamine (5-CT) (5 μM; 5-HT1/5/7 agonist) increased the frequency of spontaneous CMMCs. 5-HTP and 5-CT also induced CMMCs in preparations with and without the mucosa, which were blocked by SB 258719. 5-HT1A, 5-HT3, and 5-HT7 receptors, most likely on Dogiel Type II/AH neurons, are important in initiating, generating, and propagating the CMMC. Tonic inhibition of the CM appears to be driven by ongoing activity in descending serotonergic interneurons; by activating 5-HT7 receptors on AH neurons these interneurons also contribute to the generation of the CMMC.


2000 ◽  
Vol 118 (4) ◽  
pp. A1200
Author(s):  
Toshiyuki Tanaka ◽  
Michael L. Kendrick ◽  
Nicholas J. Zyromski ◽  
Tobias Meile ◽  
Michael G. Sarr

2001 ◽  
Vol 281 (1) ◽  
pp. G283-G292 ◽  
Author(s):  
Toshiyuki Tanaka ◽  
Michael L. Kendrick ◽  
Nicholas J. Zyromski ◽  
Tobias Meile ◽  
Michael G. Sarr

To determine the role of vagal nerves in initiation and modulation of the gastric migrating motor complex (MMC), motor activity was recorded in four dogs before and after total abdominal vagotomy during fasting, after exogenous intravenous motilin and insulin, and after feeding. After vagotomy, a temporally coordinated cyclic gastric and small bowel MMC persisted with an unchanged period. During gastric phase III, vagotomy decreased number of contractions (42 ± 4 vs. 16 ± 2), number of groupings of contractions (14 ± 1 vs. 7 ± 1), and motility index (12 ± 1 vs. 10 ± 1) and increased the duration between groupings (1 ± 1 vs. 3 ± 1 min) ( P< 0.05 in each). Before and after vagotomy, motilin and insulin induced a premature MMC with minor changes in contractile pattern. A 200-g liver meal but not a 50-g liver meal inhibited the gastric MMC after vagotomy. A cyclic MMC persisted after vagotomy, but the contractile pattern during gastric phase III was altered. After a short recovery period, vagal innervation to the stomach modulates the pattern but not the presence of gastric interdigestive motility during phase III.


1987 ◽  
Vol 92 (6) ◽  
pp. 1919-1925 ◽  
Author(s):  
Charles-Henri Malbert ◽  
Yves Ruckebusch

PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e64777 ◽  
Author(s):  
Yuki Miyano ◽  
Ichiro Sakata ◽  
Kayuri Kuroda ◽  
Sayaka Aizawa ◽  
Toru Tanaka ◽  
...  

1989 ◽  
Vol 2 (4) ◽  
pp. 437-446 ◽  
Author(s):  
Nadey S. Hakim ◽  
Nathaniel J. Soper ◽  
Michael P. Spencer ◽  
Michael G. Sarr

Sign in / Sign up

Export Citation Format

Share Document