Cytotoxic effects of the alkaloid chelidonine from chelidonium majus on pancreatic cancer cells. An old and highly potent anticancer drug

2001 ◽  
Vol 120 (5) ◽  
pp. A617-A618
Author(s):  
Frank Gansauge ◽  
Marco Ramadani ◽  
Susanne Gansauge
2017 ◽  
Vol 38 (5) ◽  
pp. 3238-3244 ◽  
Author(s):  
Daichi Kawamura ◽  
Yoshihiro Takemoto ◽  
Arata Nishimoto ◽  
Koji Ueno ◽  
Tohru Hosoyama ◽  
...  

2019 ◽  
Vol 28 (7) ◽  
pp. 984-991 ◽  
Author(s):  
Barbara De Filippis ◽  
Laura De Lellis ◽  
Rosalba Florio ◽  
Alessandra Ammazzalorso ◽  
Pasquale Amoia ◽  
...  

2020 ◽  
Vol 55 ◽  
pp. 101374 ◽  
Author(s):  
Kevin O. Affram ◽  
Taylor Smith ◽  
Edward Ofori ◽  
Sunil Krishnan ◽  
Patrick Underwood ◽  
...  

2012 ◽  
Vol 24 (02) ◽  
pp. 131-137
Author(s):  
Byunghyun Cho ◽  
Hee-Ho Lee ◽  
Jang-Kyoo Shin ◽  
Masaharu Murata ◽  
Kenoki Ohuchida ◽  
...  

In this paper, we assess the feasibility of detecting human pancreatic cancer cells using a field effect transistor (FET)-based biosensor with an extended Au gate for medical application. Pancreatic cancer is one of the most fatal cancers, and is very difficult to diagnose in its early stages. Gemcitabine is an anticancer drug, and when used in chemotherapy it induces cell death. During apoptosis, the surface potential of the pancreatic cancer cells is changed by gemcitabine. In the present study, this change was detected using an FET-based biosensor. This biosensor was fabricated with an extended Au gate, whose surface is a sensing area for cancer cells. A null-balancing circuit was used in the measurement system, and the LabVIEW software platform allowed the immune-reaction at the Au gate to be detected as an output voltage. The cancer cells were incubated for one day; during this time, the cancer cells adhered to the Au extended gate surface. As gemcitabine was introduced to the cancer cells in vitro, changes in the output of the biosensor were monitored. Pancreatic cancer cells with a resistance to gemcitabine were used to verify that the change in the output of the biosensor was due only to the interaction between the cancer cells and the gemcitabine. We also investigated the relationship between the starting time of the reaction and the concentration of the anticancer drug.


2012 ◽  
Vol 28 (6) ◽  
pp. 1968-1976 ◽  
Author(s):  
TAKANOBU TAKATA ◽  
YASUHITO ISHIGAKI ◽  
TAKEO SHIMASAKI ◽  
HIDEYUKI TSUCHIDA ◽  
YOSHIHARU MOTOO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document