scholarly journals Biochemical characterization of mouse forebrain G protein-gated inwardy rectifying K+ channel.

1996 ◽  
Vol 71 ◽  
pp. 151
Author(s):  
Atsushi Inanobe ◽  
Yoshihisa Kurachi
2012 ◽  
Vol 59 (4) ◽  
Author(s):  
Dorota Latek ◽  
Anna Modzelewska ◽  
Bartosz Trzaskowski ◽  
Krzysztof Palczewski ◽  
Sławomir Filipek

The years 2000 and 2007 witnessed milestones in current understanding of G protein-coupled receptor (GPCR) structural biology. In 2000 the first GPCR, bovine rhodopsin, was crystallized and the structure was solved, while in 2007 the structure of β(2)-adrenergic receptor, the first GPCR with diffusible ligands, was determined owing to advances in microcrystallization and an insertion of the fast-folding lysozyme into the receptor. In parallel with those crystallographic studies, the biological and biochemical characterization of GPCRs has advanced considerably because those receptors are molecular targets for many of currently used drugs. Therefore, the mechanisms of activation and signal transduction to the cell interior deduced from known GPCRs structures are of the highest importance for drug discovery. These proteins are the most diversified membrane receptors encoded by hundreds of genes in our genome. They participate in processes responsible for vision, smell, taste and neuronal transmission in response to photons or binding of ions, hormones, peptides, chemokines and other factors. Although the GPCRs share a common seven-transmembrane α-helical bundle structure their binding sites can accommodate thousands of different ligands. The ligands, including agonists, antagonists or inverse agonists change the structure of the receptor. With bound agonists they can form a complex with a suitable G protein, be phosphorylated by kinases or bind arrestin. The discovered signaling cascades invoked by arrestin independently of G proteins makes the GPCR activating scheme more complex such that a ligand acting as an antagonist for G protein signaling can also act as an agonist in arrestin-dependent signaling. Additionally, the existence of multiple ligand-dependent partial activation states as well as dimerization of GPCRs result in a 'microprocessor-like' action of these receptors rather than an 'on-off' switch as was commonly believed only a decade ago.


1998 ◽  
Vol 26 (1) ◽  
pp. 77-81
Author(s):  
Jorge P. Muschietti ◽  
Horacio E. Martinetto ◽  
Mirtha M. Flawi

2006 ◽  
Vol 394 (1) ◽  
pp. 309-315 ◽  
Author(s):  
Vivek Mittal ◽  
Maurine E. Linder

RGS (regulators of G-protein signalling) modulate signalling by acting as GAPs (GTPase-activating proteins) for α subunits of heterotrimeric G-proteins. RGS14 accelerates GTP hydrolysis by Giα family members through its RGS domain and suppresses guanine nucleotide dissociation from Giα1 and Giα3 subunits through its C-terminal GoLoco domain. Additionally, RGS14 binds the activated forms of the small GTPases Rap1 and Rap2 by virtue of tandem RBDs (Raf-like Ras/Rap binding domains). RGS14 was identified in a screen for Rap2 effectors [Traver, Splingard, Gaudriault and De Gunzburg (2004) Biochem. J. 379, 627–632]. In the present study, we tested whether Rap binding regulates RGS14's biochemical activities. We found that RGS14 activity towards heterotrimeric G-proteins, as either a GAP or a GDI (guanine nucleotide dissociation inhibitor), was unaffected by Rap binding. Extending our biochemical characterization of RGS14, we also examined whether RGS14 can suppress guanine nucleotide exchange on Giα1 in the context of the heterotrimer. We found that a heterotrimer composed of N-myristoylated Giα1 and prenylated Gβγ is resistant to the GDI activity of the GoLoco domain of RGS14. This is consistent with models of GoLoco domain action on free Gα and suggests that RGS14 alone cannot induce subunit dissociation to promote receptor-independent activation of Gβγ-mediated signalling pathways.


2010 ◽  
Vol 9 (4) ◽  
pp. 626-633 ◽  
Author(s):  
F. Douglas Ivey ◽  
Francis X. Taglia ◽  
Fan Yang ◽  
Matthew M. Lander ◽  
David A. Kelly ◽  
...  

ABSTRACT The Schizosaccharomyces pombe glucose/cyclic AMP (cAMP) signaling pathway includes the Gpa2-Git5-Git11 heterotrimeric G protein, whose Gpa2 Gα subunit directly binds to and activates adenylate cyclase in response to signaling from the Git3 G protein-coupled receptor. To study intrinsic and extrinsic regulation of Gpa2, we developed a plasmid-based screen to identify mutationally activated gpa2 alleles that bypass the loss of the Git5-Git11 Gβγ dimer to repress transcription of the glucose-regulated fbp1 + gene. Fifteen independently isolated mutations alter 11 different Gpa2 residues, with all but one conferring a receptor-independent activated phenotype upon integration into the gpa2 + chromosomal locus. Biochemical characterization of three activated Gpa2 proteins demonstrated an increased GDP-GTP exchange rate that would explain the mechanism of activation. Interestingly, the amino acid altered in the Gpa2(V90A) exchange rate mutant protein is in a region of Gpa2 with no obvious role in Gα function, thus extending our understanding of Gα protein structure-function relationships.


Author(s):  
J. H. Resau ◽  
N. Howell ◽  
S. H. Chang

Spinach grown in Texas developed “yellow spotting” on the peripheral portions of the leaves. The exact cause of the discoloration could not be determined as there was no evidence of viral or parasitic infestation of the plants and biochemical characterization of the plants did not indicate any significant differences between the yellow and green leaf portions of the spinach. The present study was undertaken using electron microscopy (EM) to determine if a micro-nutrient deficiency was the cause for the discoloration.Green leaf spinach was collected from the field and sent by express mail to the EM laboratory. The yellow and equivalent green portions of the leaves were isolated and dried in a Denton evaporator at 10-5 Torr for 24 hrs. The leaf specimens were then examined using a JEOL 100 CX analytical microscope. TEM specimens were prepared according to the methods of Trump et al.


Sign in / Sign up

Export Citation Format

Share Document