scholarly journals The effects of the adrenergic transmission change on low frequency (LF) and very low frequency (VLF) components of heart rate and blood pressure fluctuation in conscious rats. -Studies with wavelet analysis-

2000 ◽  
Vol 82 ◽  
pp. 217
Author(s):  
Shinya Nagata ◽  
Ryuji Nagai ◽  
Fumiyo Fukuya ◽  
Kenji Kouchi ◽  
Masanobu Komiya
2000 ◽  
Vol 99 (2) ◽  
pp. 125 ◽  
Author(s):  
Darrel P. FRANCIS ◽  
L. Ceri DAVIES ◽  
Keith WILLSON ◽  
Piotr PONIKOWSKI ◽  
Andrew J.S. COATS ◽  
...  

2017 ◽  
pp. 449-457 ◽  
Author(s):  
Y.-H. LIN ◽  
Y.-P. LIU ◽  
Y.-C. LIN ◽  
P.-L. LEE ◽  
C.-S. TUNG

This study extends our previous work by examining the effects of alpha2-adrenoceptors under cold stimulation involving the increase of myogenic vascular oscillations as increases of very-low-frequency and low-frequency of the blood pressure variability. Forty-eight adult male Sprague-Dawley rats were randomly divided into four groups: vehicle; yohimbine; hexamethonium+yohimbine; guanethidine+yohimbine. Systolic blood pressure, heart rate, power spectral analysis of spontaneous blood pressure and heart rate variability and spectral coherence at very-low-frequency (0.02 to 0.2 Hz), low-frequency (0.2 to 0.6 Hz), and high-frequency (0.6 to 3.0 Hz) regions were monitored using telemetry. Key findings are as follows: 1) Cooling-induced pressor response was attenuated by yohimbine and further attenuated by hexamethonium+yohimbine and guanethidine+yohimbine, 2) Cooling-induced tachycardia response of yohimbine was attenuated by hexame-thonium+yohimbine and guanethidine+yohimbine, 3) Different patterns of power spectrum reaction and coherence value compared hexamethonium+yohimbine and guanethi-dine+yohimbine to yohimbine alone under cold stimulation. The results suggest that sympathetic activation of the postsynaptic alpha2-adrenoceptors causes vasoconstriction and heightening myogenic vascular oscillations, in turn, may increase blood flow to prevent tissue damage under stressful cooling challenge.


2002 ◽  
Vol 96 (2) ◽  
pp. 140-148 ◽  
Author(s):  
Ron J Leor-Librach ◽  
Ben-Zion Bobrovsky ◽  
Sarah Eliash ◽  
Elieser Kaplinsky

1997 ◽  
Vol 272 (1) ◽  
pp. H438-H447 ◽  
Author(s):  
P. Ponikowski ◽  
T. P. Chua ◽  
M. Piepoli ◽  
A. A. Amadi ◽  
D. Harrington ◽  
...  

Factors responsible for very low frequency oscillations (VLF; cycle > 30 s) in the cardiovascular system remain obscure. We tested the hypothesis that increased peripheral chemosensitivity is important in the pathogenesis of VLF oscillations in patients with chronic heart failure (CHF). Fourteen male patients with stable, moderate to severe CHF (age 60 +/- 1.1 yr, ejection fraction 23 +/- 11%) and reproducible VLF oscillations in heart rate underwent a protocol consisting of three consecutive 20-min phases during which they breathed air, hyperoxia (O2 via mask, 60% O2 concn), and air again. Autoregressive spectral analysis of R-R intervals, blood pressure, and respiration was used to quantify total oscillatory power (TP), VLF, low (0.04-0.15 Hz)- and high (0.15-0.40Hz)-frequency power, and the coherence between these signals. Peripheral chemosensitivity was studied by assessing the ventilatory response to hypoxia using transient inhalations of pure N2. Discrete VLF rhythms were seen in R-R intervals in all 14 patients, in blood pressure in 7 of 14, and in respiration in 8 of 14 patients. A significant coherence (> 0.5) between heart rate and systolic blood pressure within the VLF band with mean phase value of -140 degrees, suggesting an antibaroreflex relationship, was seen in six subjects. Transient hyperoxia abolished the VLF oscillations in most subjects (12 of 14 in R-R intervals) and decreased R-R variability power within the VLF band. This response significantly correlated with peripheral chemoreceptor sensitivity (r = 0.77, P = 0.014). This study suggests that in CHF, enhanced peripheral chemoreceptor activity may facilitate slow oscillations in the cardiorespiratory signals.


2000 ◽  
Vol 99 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Darrel P. FRANCIS ◽  
L. Ceri DAVIES ◽  
Keith WILLSON ◽  
Piotr PONIKOWSKI ◽  
Andrew J. S. COATS ◽  
...  

In chronic heart failure, very-low-frequency (VLF) oscillations (0.01–0.04 Hz) in heart rate and blood pressure may be related to periodic breathing, although the mechanism has not been fully characterized. Groups of ten patients with chronic heart failure and ten healthy controls performed voluntary periodic breathing with computer guidance, while ventilation, oxygen saturation, non-invasive blood pressure and RR interval were measured. In air, voluntary periodic breathing induced periodic desaturation and prominent VLF oscillations when compared with free breathing in both patients [RR interval spectral power from 179 to 358 ms2 (P < 0.05); systolic blood pressure (SBP) spectral power from 3.44 to 6.25 mmHg2 (P < 0.05)] and controls [RR spectral power from 1040 to 2307 ms2 (P < 0.05); SBP spectral power from 3.40 to 9.38 mmHg2 (P < 0.05)]. The peak in RR interval occurred 16–26 s before that in SBP, an anti-baroreflex pattern. When the patients followed an identical breathing pattern in hyperoxic conditions to prevent desaturation, the VLF RR interval spectral power was 50% lower (179.0±51.7 ms2; P < 0.01) and the VLF SBP spectral power was 44% lower (3.51±0.77 mmHg2; P < 0.01); similar effects were seen in controls (VLF RR power 20% lower, at 1847±899 ms2, P < 0.05; VLF SBP power 61% lower, at 3.68±0.92 mmHg2, P = 0.01). Low- and high-frequency spectral powers were not significantly affected. Thus periodic breathing causes oxygen-sensitive (and by implication chemoreflex-related) anti-baroreflex VLF oscillations in RR interval and blood pressure in both patients with chronic heart failure and normal controls.


2005 ◽  
Vol 69 (6) ◽  
pp. 717-721 ◽  
Author(s):  
Yasuko Nishioka ◽  
Hironobu Sashika ◽  
Norihiko Andho ◽  
Osamu Tochikubo

Sign in / Sign up

Export Citation Format

Share Document