scholarly journals Site-specific alteration of arginine 376, the unique positively charged amino acid residue in the mid-membrane-spanning regions of the proline carrier of Escherichia coli.

1994 ◽  
Vol 269 (8) ◽  
pp. 5720-5724
Author(s):  
I. Yamato ◽  
M. Kotani ◽  
Y. Oka ◽  
Y. Anraku
2000 ◽  
Vol 182 (21) ◽  
pp. 6243-6246 ◽  
Author(s):  
Haitao Zhang ◽  
George T. Javor

ABSTRACT The open reading frame at 86.7 min on the Escherichia coli chromosome, “yigC,” complemented aubiD mutant strain, AN66, indicating that yigCis the ubiD gene. The gene product, a 497-amino-acid-residue protein, showed extensive homology to the UPF 00096 family of proteins in the Swiss-Prot database.


2001 ◽  
Vol 183 (23) ◽  
pp. 6961-6964 ◽  
Author(s):  
Hiroyasu Yamanaka ◽  
Hiroshi Izawa ◽  
Keinosuke Okamoto

ABSTRACT The Escherichia coli TolC acts as a channel tunnel in the transport of various molecules across the outer membrane. Partial-deletion studies of tolC revealed that the region extending from the 50th to the 60th amino acid residue from the carboxy terminus plays an important role in this transport activity of TolC.


2002 ◽  
Vol 184 (11) ◽  
pp. 2906-2913 ◽  
Author(s):  
Keietsu Abe ◽  
Fumito Ohnishi ◽  
Kyoko Yagi ◽  
Tasuku Nakajima ◽  
Takeshi Higuchi ◽  
...  

ABSTRACT Tetragenococcus halophila D10 catalyzes the decarboxylation of l-aspartate with nearly stoichiometric release of l-alanine and CO2. This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an l-aspartate-β-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter → aspD → aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known l-aspartate-β-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of l-aspartate-β-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high.


2005 ◽  
Vol 174 (2) ◽  
pp. 962-969 ◽  
Author(s):  
Jason L. Petersen ◽  
Heather D. Hickman-Miller ◽  
Mary M. McIlhaney ◽  
Shanna E. Vargas ◽  
Anthony W. Purcell ◽  
...  

1999 ◽  
Vol 31 (6) ◽  
pp. 1747-1757 ◽  
Author(s):  
Riitta Pouttu ◽  
Terhi Puustinen ◽  
Ritva Virkola ◽  
Jorg Hacker ◽  
Per Klemm ◽  
...  

2002 ◽  
Vol 33 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Hiroyasu Yamanaka ◽  
Tomohiko Nomura ◽  
Naoyuki Morisada ◽  
Sumio Shinoda ◽  
Keinosuke Okamoto

Sign in / Sign up

Export Citation Format

Share Document