charged amino acid residue
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2013 ◽  
Vol 69 (10) ◽  
pp. 1946-1957 ◽  
Author(s):  
Daniel Fernández ◽  
Silvia Russi ◽  
Josep Vendrell ◽  
Michel Monod ◽  
Irantzu Pallarès

Fungalysins are secreted fungal peptidases with the ability to degrade the extracellular matrix proteins elastin and collagen and are thought to act as virulence factors in diseases caused by fungi. Fungalysins constitute a unique family among zinc-dependent peptidases that bears low sequence similarity to known bacterial peptidases of the thermolysin family. The crystal structure of the archetype of the fungalysin family,Aspergillus fumigatusmetalloprotease (AfuMep), has been obtained for the first time. The 1.8 Å resolution structure of AfuMep corresponds to that of an autoproteolyzed proenzyme with separate polypeptide chains corresponding to the N-terminal prodomain in a binary complex with the C-terminal zinc-bound catalytic domain. The prodomain consists of a tandem of cystatin-like folds whose C-terminal end is buried into the active-site cleft of the catalytic domain. The catalytic domain harbouring the key catalytic zinc ion and its ligands, two histidines and one glutamic acid, undergoes a conspicuous rearrangement of its N-terminal end during maturation. One key positively charged amino-acid residue and the C-terminal disulfide bridge appear to contribute to its structural–functional properties. Thus, structural, biophysical and biochemical analysis were combined to provide a deeper comprehension of the underlying properties ofA. fumigatusfungalysin, serving as a framework for the as yet poorly known metallopeptidases from pathogenic fungi.


2008 ◽  
Vol 199 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Shih-Lu Wu ◽  
Tin-Yun Ho ◽  
Ji-An Liang ◽  
Chien-Yun Hsiang

The sodium/iodide symporter (SLC5A5; also known as NIS), a transmembrane glycoprotein principally in the thyroid gland, is responsible for the accumulation of iodide necessary for thyroid hormones. Our previous study indicated that a novel exon 6 deletion (residues 233–280) in SLC5A5 loses the iodide uptake activity. Herein we characterized the role of His-226 in iodide transport of SLC5A5. His-226, a highly conserved extracellular residue among SLC5A5 homologs, was replaced with alanine, aspartic acid, glutamic acid, or lysine. All the SLC5A5 mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, all of the mutants displayed severe defects in iodide uptake, suggesting that His-226 was critical for iodide uptake. Kinetic analysis further showed that mutation at His-226 led to a dramatic decrease in Vmax. These findings suggested that the decreased levels of iodide uptake activity of SLC5A5 mutants resulted from lower catalytic rates. In conclusion, our data first identified the involvement of extracellular charged amino acid residue in the iodide uptake ability of SLC5A5.


2005 ◽  
Vol 174 (2) ◽  
pp. 962-969 ◽  
Author(s):  
Jason L. Petersen ◽  
Heather D. Hickman-Miller ◽  
Mary M. McIlhaney ◽  
Shanna E. Vargas ◽  
Anthony W. Purcell ◽  
...  

1997 ◽  
Vol 326 (1) ◽  
pp. 221-225 ◽  
Author(s):  
Shinji TOGASHI ◽  
Kazunaga TAKAZAWA ◽  
Toyoshi ENDO ◽  
Christophe ERNEUX ◽  
Toshimasa ONAYA

A series of key amino acids involved in Ins(1,4,5)P3 (InsP3) binding and catalytic activity of rat brain InsP3 3-kinase has been identified. The catalytic domain is at the C-terminal end and restricted to a maximum of 275 amino acids [Takazawa and Erneux (1991) Biochem. J. 280, 125–129]. In this study, newly prepared 5′-deletion and site-directed mutants have been compared both for InsP3 binding and InsP3 3-kinase activity. When the protein was expressed from L259 to R459, the activity was lost but InsP3 binding was conserved. Another deletion mutant that had lost only four amino acids after L259 had lost InsP3 binding, and this finding suggests that these residues (i.e. L259DCK262) are involved in InsP3 binding. To further support the data, we have produced two mutants by site-directed mutagenesis on residues C261 and K262. The two new enzymes were designated M4 (C261S) and M5 (K262A). M4 showed similar Vmax and Km values for InsP3 and ATP to wild-type enzyme. In contrast, M5 was totally inactive but had kept the ability to bind to calmodulin–Sepharose. C-terminal deletion mutants that had lost five, seven or nine amino acids showed a large decrease in InsP3 binding and InsP3 3-kinase activity. One mutant that had lost five amino acids (M2) was purified to apparent homogeneity: Km values for both substrates appeared unchanged but Vmax was decreased approx. 40-fold compared with the wild-type enzyme. The results indicate that (1) a positively charged amino acid residue K262 is essential for InsP3 binding and (2) amino acids at the C-terminal end of the protein are necessary to act as a catalyst in the InsP3 3-kinase reaction.


1980 ◽  
Vol 255 (23) ◽  
pp. 11464-11472
Author(s):  
P. Kanellis ◽  
A.Y. Romans ◽  
B.J. Johnson ◽  
H. Kercret ◽  
R. Chiovetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document