scholarly journals Nereis cuticle collagen. Isolation and properties of a large fragment resistant to proteolysis by bacterial collagenase.

1977 ◽  
Vol 252 (22) ◽  
pp. 8018-8022 ◽  
Author(s):  
S. Kimura ◽  
M.L. Tanzer
2019 ◽  
Author(s):  
Yuning Song ◽  
Zhiquan Liu ◽  
Yuxin Zhang ◽  
Mao Chen ◽  
Tingting Sui ◽  
...  
Keyword(s):  

Genetics ◽  
2021 ◽  
Author(s):  
Jérôme Goudeau ◽  
Catherine S Sharp ◽  
Jonathan Paw ◽  
Laura Savy ◽  
Manuel D Leonetti ◽  
...  

Abstract We create and share a new red fluorophore, along with a set of strains, reagents and protocols, to make it faster and easier to label endogenous C. elegans proteins with fluorescent tags. CRISPR-mediated fluorescent labeling of C. elegans proteins is an invaluable tool, but it is much more difficult to insert fluorophore-size DNA segments than it is to make small gene edits. In principle, high-affinity asymmetrically split fluorescent proteins solve this problem in C. elegans: the small fragment can quickly and easily be fused to almost any protein of interest, and can be detected wherever the large fragment is expressed and complemented. However, there is currently only one available strain stably expressing the large fragment of a split fluorescent protein, restricting this solution to a single tissue (the germline) in the highly autofluorescent green channel. No available C. elegans lines express unbound large fragments of split red fluorescent proteins, and even state-of-the-art split red fluorescent proteins are dim compared to the canonical split-sfGFP protein. In this study, we engineer a bright, high-affinity new split red fluorophore, split-wrmScarlet. We generate transgenic C. elegans lines to allow easy single-color labeling in muscle or germline cells and dual-color labeling in somatic cells. We also describe a novel expression strategy for the germline, where traditional expression strategies struggle. We validate these strains by targeting split-wrmScarlet to several genes whose products label distinct organelles, and we provide a protocol for easy, cloning-free CRISPR/Cas9 editing. As the collection of split-FP strains for labeling in different tissues or organelles expands, we will post updates at doi.org/10.5281/zenodo.3993663


Biochemistry ◽  
1984 ◽  
Vol 23 (9) ◽  
pp. 2073-2078 ◽  
Author(s):  
Anup K. Hazra ◽  
Sevilla Detera-Wadleigh ◽  
Samuel H. Wilson

1981 ◽  
Vol 195 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Christopher H. Evans

Tervalent cations of the lanthanide (rare-earth) elements reversibly inhibit bacterial collagenase (clostridiopeptidase A; EC 3.4.24.3). Sm3+, whose ionic radius is closest to that of Ca2+, is the most effective inhibitor, completely suppressing clostridiopeptidase activity at a concentration of 100μm in the presence of 5mm-Ca2+. Er3+ and Lu3+, which both have ionic radii smaller than either Ca2+ or Sm3+, inhibit less efficiently, and La3+, which is slightly larger than Ca2+ or Sm3+, inhibits only weakly. These findings indicate a closely fitting, stereospecific, Ca2+-binding pocket in clostridiopeptidase, which excludes ions that are only slightly larger than Ca2+ [ionic radius 0.099nm (0.99 Ȧ)]. By contrast, trypsin, an enzyme whose activity does not depend on Ca2+, requires lanthanide concentrations 50–100-fold greater for inhibition. Furthermore, the relative efficiency of inhibition of trypsin by lanthanides increases as the lanthanide ions become smaller and the charge/volume ratio increases. At a concentration of 50μm, Sm3+ lowers the apparent Km for the hydrolysis of Pz-peptide by clostridiopeptidase from 5.4mm to 0.37mm and the apparent Vmax. from 0.29 Wünsch–Heidrich unit to 0.018 unit. Thus Sm3+ enhances the affinity of this enzyme for its substrate; inhibition of hydrolysis of Pz-peptide may result from the excessive stability of the enzyme–Sm3+–substrate complex. Inhibition by Sm3+ is competitive with regard to Ca2+. The apparent dissociation constant, Kd, of Ca2+ is 0.27mm, where the Ki for Sm3+ is 12μm. Clostridiopeptidase is more thermolabile in the absence of Ca2+. With Sm3+, thermoinactivation of the enzyme at 53°C or 60°C is initially accelerated, but then becomes retarded as heating continues. Lanthanide ions bind to gelatin and collagen. In so doing, they appear to protect these substrates from lysis by clostridiopeptidase through mechanisms additional to supplanting Ca2+ at its binding site on the enzyme. Collagen and gelatin sequester sufficient lanthanide ions to gain partial protection from clostridiopeptidase in the absence of an extraneous source of these inhibitors.


1979 ◽  
Vol 567 (2) ◽  
pp. 392-400 ◽  
Author(s):  
Genichiro Oshima ◽  
Hirokazu Shimabukubo ◽  
Kinzo Nagasawa

2011 ◽  
Vol 23 (3) ◽  
pp. 505-519 ◽  
Author(s):  
Cynthia R. Sides ◽  
Rohana Liyanage ◽  
Jackson O. Lay ◽  
Sagaya Theresa Leena Philominathan ◽  
Osamu Matsushita ◽  
...  

1965 ◽  
Vol 18 (4) ◽  
pp. 627-632 ◽  
Author(s):  
Elvin Harper ◽  
Sam Seifter ◽  
Verne D. Hospelhorn

Sign in / Sign up

Export Citation Format

Share Document