scholarly journals An Escherichia coli protein consisting of a domain homologous to FK506-binding proteins (FKBP) and a new metal binding motif.

1994 ◽  
Vol 269 (4) ◽  
pp. 2895-2901
Author(s):  
C. Wülfing ◽  
J. Lombardero ◽  
A. Plückthun
1998 ◽  
Vol 64 (10) ◽  
pp. 4068-4072 ◽  
Author(s):  
Mehran Pazirandeh ◽  
Bridget M. Wells ◽  
Rebecca L. Ryan

ABSTRACT A gene coding for a de novo peptide sequence containing a metal binding motif was chemically synthesized and expressed inEscherichia coli as a fusion with the maltose binding protein. Bacterial cells expressing the metal binding peptide fusion demonstrated enhanced binding of Cd2+ and Hg2+compared to bacterial cells lacking the metal binding peptide. The potential use of genetically engineered bacteria as biosorbents for the removal of heavy metals from wastewaters is discussed.


Biochemistry ◽  
2011 ◽  
Vol 50 (13) ◽  
pp. 2672-2682 ◽  
Author(s):  
Narayanan Veeraraghavan ◽  
Abir Ganguly ◽  
Jui-Hui Chen ◽  
Philip C. Bevilacqua ◽  
Sharon Hammes-Schiffer ◽  
...  

2003 ◽  
Vol 43 (supplement) ◽  
pp. S28
Author(s):  
Y. Tanaka ◽  
Y. Kasai ◽  
C. Kojima ◽  
K. Yamasaki ◽  
H. Morita ◽  
...  

2003 ◽  
Vol 69 (11) ◽  
pp. 6442-6446 ◽  
Author(s):  
Tatsuya Ueki ◽  
Yasuhisa Sakamoto ◽  
Nobuo Yamaguchi ◽  
Hitoshi Michibata

ABSTRACT The genes encoding two vanadium-binding proteins, vanabin1 and vanabin2, from a vanadium-rich ascidian, Ascidia sydneiensis samea, were recently identified and cloned (T. Ueki, T. Adachi, S. Kawano, M. Aoshima, N. Yamaguchi, K. Kanamori, and H. Michibata, Biochim. Biophys. Acta 1626:43-50, 2003). The vanabins were found to bind vanadium(IV), and an excess of copper(II) ions inhibited the binding of vanadium(IV) to the vanabins in vitro. In this study, we constructed Escherichia coli strains that expressed vanabin1 or vanabin2 fused to maltose-binding protein (MBP) in the periplasmic space. We found that both strains accumulated about twenty times more copper(II) ions than the control BL21 strain, while no significant accumulation of vanadium was observed. The strains expressing either MBP-vanabin1 or MBP-vanabin2 absorbed approximately 70% of the copper ions in the medium to which 10 μM copper (II) ions were initially added. The MBP-vanabin1 and MBP-vanabin2 protein expressed in the periplasm bound to copper ions at a copper:protein molar ratio of 8:1 and 5:1, respectively, but MBP did not bind to copper ions. These data showed that the metal-binding proteins vanabin1 and vanabin2 bound copper ions directly and enhanced the bioaccumulation of copper ions by E. coli.


2004 ◽  
Vol 166 (7) ◽  
pp. 1003-1014 ◽  
Author(s):  
Gideon Lansbergen ◽  
Yulia Komarova ◽  
Mauro Modesti ◽  
Claire Wyman ◽  
Casper C. Hoogenraad ◽  
...  

Cytoplasmic linker protein (CLIP)-170, CLIP-115, and the dynactin subunit p150Glued are structurally related proteins, which associate specifically with the ends of growing microtubules (MTs). Here, we show that down-regulation of CLIP-170 by RNA interference results in a strongly reduced accumulation of dynactin at the MT tips. The NH2 terminus of p150Glued binds directly to the COOH terminus of CLIP-170 through its second metal-binding motif. p150Glued and LIS1, a dynein-associating protein, compete for the interaction with the CLIP-170 COOH terminus, suggesting that LIS1 can act to release dynactin from the MT tips. We also show that the NH2-terminal part of CLIP-170 itself associates with the CLIP-170 COOH terminus through its first metal-binding motif. By using scanning force microscopy and fluorescence resonance energy transfer-based experiments we provide evidence for an intramolecular interaction between the NH2 and COOH termini of CLIP-170. This interaction interferes with the binding of the CLIP-170 to MTs. We propose that conformational changes in CLIP-170 are important for binding to dynactin, LIS1, and the MT tips.


2004 ◽  
Vol 431 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Junzo Hirose ◽  
Hiroshi Kamigakiuchi ◽  
Hiroyuki Iwamoto ◽  
Hideaki Fujii ◽  
Masanori Nakai ◽  
...  

2000 ◽  
Vol 40 (supplement) ◽  
pp. S94
Author(s):  
Y. Tanaka ◽  
E.H. Morita ◽  
H. Hayashi ◽  
Y. Kasa ◽  
T. Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document