scholarly journals Protein-protein interactions in contact activation of blood coagulation. Characterization of fluorescein-labeled human high molecular weight kininogen-light chain as a probe.

1983 ◽  
Vol 258 (24) ◽  
pp. 15079-15086 ◽  
Author(s):  
P E Bock ◽  
J D Shore
1984 ◽  
Vol 52 (03) ◽  
pp. 221-223 ◽  
Author(s):  
M Christe ◽  
P Gattlen ◽  
J Fritschi ◽  
B Lämmle ◽  
W Berger ◽  
...  

SummaryThe contact phase has been studied in diabetics and patients with macroangiopathy. Factor XII and high molecular weight kininogen (HMWK) are normal. C1-inhibitor and also α2-macroglobulin are significantly elevated in diabetics with complications, for α1-macroglobulin especially in patients with nephropathy, 137.5% ± 36.0 (p <0.001). C1-inhibitor is also increased in vasculopathy without diabetes 113.2 ± 22.1 (p <0.01).Prekallikrein (PK) is increased in all patients’ groups (Table 2) as compared to normals. PK is particularly high (134% ± 32) in 5 diabetics without macroangiopathy but with sensomotor neuropathy. This difference is remarkable because of the older age of diabetics and the negative correlation of PK with age in normals.


Blood ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 156-159 ◽  
Author(s):  
L Vroman ◽  
AL Adams ◽  
GC Fischer ◽  
PC Munoz

Abstract Using ellipsometry, anodized tantalum interference color, and Coomassie blue staining in conjunction with immunologic identification of proteins adsorbed at interfaces, we have previously found that fibrinogen is the main constituent deposited by plasma onto many man- made surfaces. However, the fibrinogen deposited from normal plasma onto glass and similar wettable materials is rapidly modified during contact activation until it can no longer be identified antigenically. In earlier publications, we have called this modification of the fibrinogen layer “conversion,” to indicate a process of unknown nature. Conversion of adsorbed fibrinogen by the plasma was not accompanied by marked change in film thickness, so that we presumed that this fibrinogen was not covered but replaced by other protein. Conversion is now showen to be markedly delayed in plasma lacking high molecular weight kininogen, slightly delayed in plasma lacking factor XII, and normal in plasma that lack factor XI or prekallikrein. We conclude that intact plasma will quickly replace the fibrinogen it has deposited on glass-like surfaces by high molecular weight kininogen and, to a smaller extent, by factor XII. Platelets adhere preferentially to fibrinogen-coated surfaces; human platelets adhere to hydrophobic nonactivating surfaces, since on these, adsorbed firbinogen is not exchanged by the plasma. The adsorbed fibrinogen will be replaced on glass-like surfaces during surface activation of clotting, and platelets failing to find fibrinogen will not adhere.


1984 ◽  
Vol 56 (3) ◽  
pp. 666-670 ◽  
Author(s):  
H. M. O'Brodovich ◽  
M. Andrew ◽  
G. W. Gray ◽  
G. Coates

Acute decompression is associated with a shortening of the activated partial thromboplastin time (aPTT). This study was performed to examine whether this change in aPTT results from hypoxia or hypobaria. We exposed healthy adults on three separate occasions to 2 h of 1) hypoxic hypobaria (410 Torr, n = 5), 2) hypoxic normobaria (fractional inspired O2 tension = 0.11, n = 4), or 3) normoxic hypobaria (410 Torr breathing supplemental O2, n = 5). The aPTT shortened during hypoxic hypobaria and hypoxic normobaria (P less than 0.05) but was unchanged during normoxic hypobaria. The prothrombin and thrombin times, hematocrit, and concentrations of fibrinogen, total plasma protein, and fibrinogen-fibrin fragment E were unchanged. During hypoxic hypobaria biologic levels of prekallikrein, high-molecular-weight kininogen, and factors XII, XI, X, VII, V, and II were unchanged, but procoagulant VIII (VIII:C) increased 50% without an increase in VIII-related antigen levels (VIIIR:Ag). Fibrin monomer was not detected in any group. In one subject who became ill after 1.5 h of hypoxic normobaria aPTT shortened by 10 s; the platelet count decreased by 93,000/mm3; VIII:C increased fivefold, but VIIIR:Ag only increased three-fold. We conclude that it is the hypoxia which shortens aPTT during acute decompression to 410 Torr and speculate that it results from an increase in plasma VIII:C-like activity.


1979 ◽  
Author(s):  
U. Seligsohn ◽  
B. østerud ◽  
S.F. Brown ◽  
J.H. Griffin ◽  
S.I. Rapaport

Factor VII(VII) is activated, giving shorter clotting times with tissue factor, when plasma is exposed to kaolin, is clotted or exposed to cold. The mechanisms involved were studied. Incubation of plasma with kaolin resulted in: No activation in XII deficiency plasma (dp), partial activation (2.5 fold) in Prekallikrein (PK) dp and High Molecular Weight Kininogen (HMWK) dp, and 4.5-9 fold activation in normal or other dp. Clotting plasma by recalcification resulted in: No activation with XII dp, HMWK dp, XI dp and IX dp, and 4-5 fold activation with VIII dp, X dp and V dp. The mechanism of cold promoted activation of VII in plasma was studied by adding purified 125-XII or 125I-IX to plasma before storage at 4° and observing the extent of their proteolysis (a measure of activation) from their radioactivity profiles on reduced Polyacrylamide gels following electrophoresis in the presence of SDS. Significantly greater 125I-IX and 125I-XII proteolysis was observed in plasma from 4 subjects whose VII activated in the cold, than in plasma from 5 subjects whose VII was not activated in the cold. Addition of anti-IX antiserum inhibited 50% of the observed cold activation of VII. Thus, with kaolin XIIa was the principal activator of VII; after clotting IXa was the principal activator and in cold activation both XIIa and IXa played roles.


Sign in / Sign up

Export Citation Format

Share Document