scholarly journals Labeling of high affinity ATP binding sites on the 53,000- and 160,000-dalton glycoproteins of the sarcoplasmic reticulum with the photoaffinity probe 8-N3-[alpha-32P]ATP.

1983 ◽  
Vol 258 (3) ◽  
pp. 1391-1394 ◽  
Author(s):  
K P Campbell ◽  
D H MacLennan
1984 ◽  
Vol 39 (11-12) ◽  
pp. 1137-1140 ◽  
Author(s):  
Pankaj Medda ◽  
Wilhelm Hasselbach

Abstract The affinity of the sarcoplasmic reticulum transport ATPase for calcium and ATP is not affected by lipid depriviation while vanadate binding is completely abolished. Lipid substitution restores vanadate binding as well as the vanadate induced disappearance of the enzyme’s high affinity calcium and nucleotide binding sites. Nucleotide binding is simultaneously restored with the displacement of vanadate from the enzyme following the occupation of its low affinity calcium binding sites.


1986 ◽  
Vol 64 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Denis LeBel ◽  
Marlyne Beattie

Photoaffinity labeling has been performed on pancreatic zymogen granule membranes using 8-azido-[α-32P]ATP (8-N3-ATP). Proteins of 92, 67, 53, and 35 kdaltons (kDa) were specifically labeled. ATP (100 μM) inhibited very strongly the labeling with 8-N3-ATP, while ADP was much less potent, AMP and cAMP being inefficient. The apparent constants for 8-N3-ATP binding were in the micromolar concentration range for the four labeled proteins. Without irradiation, 8-N3-ATP was a competitive inhibitor (Ki = 2.66 μM) for the hydrolysis of ATP by the ATP diphosphohydrolase. The optimal conditions for the photolabeling of the 92- and 53-kDa proteins were pH 6.0 in presence of divalent cations. On the other hand the 67- and 35-kDa proteins required an alkaline pH and the addition of EDTA in the photolabeling medium. No proteins could be labeled on intact zymogen granules, showing that all the high-affinity ATP-binding sites of the membrane were located at the interior of the granule. Both the 92- and 53-kDa glycoproteins could bind to concanavalin A–Sepharose and be extracted in the detergent phase in the Triton X-114 phase separation system. These latter properties are typical of integral membrane proteins. In addition, the 53-kDa labeled protein was sensitive to endo-β-N-acetylglucosaminidase digestion. Photolabeling with 8-N3-ATP of two different preparations of purified ATP diphosphohydrolase also led to the labeling of a 53-kDa protein. Thus among the four proteins labeled with 8-N3-ATP on the pancreatic zymogen granule membrane, the 53-kDa integral membrane glycoprotein was shown to bear the catalytic site of the ATP diphosphohydrolase.


1987 ◽  
Vol 245 (3) ◽  
pp. 713-721 ◽  
Author(s):  
J M McWhirter ◽  
G W Gould ◽  
J M East ◽  
A G Lee

We present a model for Ca2+ efflux from vesicles of sarcoplasmic reticulum (SR). It is proposed that efflux is mediated by the Ca2+ + Mg2+-activated ATPase that is responsible for Ca2+ uptake in this system. In the normal ATPase cycle of the ATPase, phosphorylation of the ATPase is followed by a conformational change in which the Ca2+-binding sites change from being outward-facing and of high affinity to being inward-facing and of low affinity. To mediate Ca2+ efflux, it is proposed that the ATPase can adopt a conformation in which the Ca2+-binding sites are of low affinity but still outward-facing. It is shown that experimental data on the rates of Ca2+ efflux can be simulated in terms of this model, with Ca2+-binding-site affinities previously proposed to explain ATPase activity [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227]. Effects of Mg2+ and adenine nucleotides on efflux rates are explained. It is suggested that Ca2+ efflux from SR mediated by the ATPase could be important in excitation-contraction coupling in skeletal muscle.


1986 ◽  
Vol 234 (2) ◽  
pp. 363-371 ◽  
Author(s):  
I Jona ◽  
A Martonosi

The effects of Ca2+, lanthanide ions (Gd3+, La3+ and Pr3+) and membrane potential on the fluorescence of tryptophan and covalently bound fluorescein were analysed in native and fluorescein isothiocyanate (FITC)-labelled sarcoplasmic reticulum vesicles. The binding of Ca2+ and lanthanides to the Ca2+-ATPase increases the fluorescence intensity of tryptophan and decreases the fluorescence intensity of FITC; the dependence of these effects on cation concentration is consistent with the involvement of the high-affinity Ca2+-binding sites of the Ca2+-ATPase in the cation-induced fluorescence changes. The fluorescence of FITC-labelled sarcoplasmic reticulum vesicles is also influenced by membrane potential changes induced by ion substitution. Inside positive potential increases, while inside negative potential decreases, the fluorescence of bound FITC. Smaller potential-dependent changes in tryptophan fluorescence were also observed. The effects of Ca2+, lanthanides and membrane potential on the fluorescence of tryptophan and FITC are discussed in terms of the two major conformations of the Ca2+-ATPase (E1 and E2), that are assumed to alternate during Ca2+ transport. The observations support the suggestion [Dux, Taylor, Ting-Beall & Martonosi (1985) J. Biol. Chem. 260, 11730-11743] that the vanadate-induced crystals of Ca2+-ATPase represent the E2, while the Ca2+ and lanthanide-induced crystals the E1, conformation of the enzyme.


1992 ◽  
Vol 287 (3) ◽  
pp. 767-774 ◽  
Author(s):  
S Corbalan-Garcia ◽  
J A Teruel ◽  
J C Gomez-Fernandez

Sarcoplasmic reticulum Ca(2+)-ATPase has previously been shown to bind and dissociate two Ca2+ ions in a sequential mode. This behaviour is confirmed here by inducing sequential Ca2+ dissociation with Ruthenium Red. Ruthenium Red binds to sarcoplasmic reticulum vesicles (6 nmol/mg) with a Kd = 2 microM, producing biphasic kinetics of Ca2+ dissociation from the Ca(2+)-ATPase, decreasing the affinity for Ca2+ binding. Studies on the effect of Ca2+ on Ruthenium Red binding indicate that Ruthenium Red does not bind to the high-affinity Ca(2+)-binding sites, as suggested by the following observations: (i) micromolar concentrations of Ca2+ do not significantly alter Ruthenium Red binding to the sarcoplasmic reticulum; (ii) quenching of the fluorescence of fluorescein 5′-isothiocyanate (FITC) bound to Ca(2+)-ATPase by Ruthenium Red (resembling Ruthenium Red binding) is not prevented by micromolar concentrations of Ca2+; (iii) quenching of FITC fluorescence by Ca2+ binding to the high-affinity sites is achieved even though Ruthenium Red is bound to the Ca(2+)-ATPase; and (iv) micromolar Ca2+ concentrations prevent inhibition of the ATP-hydrolytic capability by dicyclohexylcarbodi-imide modification, but Ruthenium Red does not. However, micromolar concentrations of lanthanides (La3+ and Tb3+) and millimolar concentrations of bivalent cations (Ca2+ and Mg2+) inhibit Ruthenium Red binding as well as quenching of FITC-labelled Ca(2+)-ATPase fluorescence by Ruthenium Red. Studies of Ruthenium Red binding to tryptic fragments of Ca(2+)-ATPase, as demonstrated by ligand blotting, indicate that Ruthenium Red does not bind to the A1 subfragment. Our observations suggest that Ruthenium Red might bind to a cation-binding site in Ca(2+)-ATPase inducing fast release of the last bound Ca2+ by interactions between the sites.


Sign in / Sign up

Export Citation Format

Share Document