scholarly journals Determination of the side chain pKa values of the lysine residues in calmodulin.

1993 ◽  
Vol 268 (30) ◽  
pp. 22420-22428
Author(s):  
M Zhang ◽  
H.J. Vogel
2020 ◽  
Author(s):  
Michele Larocca

<p>Protein folding is strictly related to the determination of the backbone dihedral angles and depends on the information contained in the amino acid sequence as well as on the hydrophobic effect. To date, the type of information embedded in the amino acid sequence has not yet been revealed. The present study deals with these problematics and aims to furnish a possible explanation of the information contained in the amino acid sequence, showing and reporting rules to calculate the backbone dihedral angles φ. The study is based on the development of mechanical forces once specific chemical interactions are established among the side chain of the residues in a polypeptide chain. It aims to furnish a theoretical approach to predict backbone dihedral angles which, in the future, may be applied to computational developments focused on the prediction of polypeptide structures.</p>


2020 ◽  
Vol 85 (16) ◽  
pp. 10951-10957
Author(s):  
Sebastian T. Jung ◽  
Joachim Podlech

2003 ◽  
Vol 122 (3) ◽  
pp. 295-306 ◽  
Author(s):  
Sonia Traverso ◽  
Laura Elia ◽  
Michael Pusch

Opening of CLC chloride channels is coupled to the translocation of the permeant anion. From the recent structure determination of bacterial CLC proteins in the closed and open configuration, a glutamate residue was hypothesized to form part of the Cl−-sensitive gate. The negatively charged side-chain of the glutamate was suggested to occlude the permeation pathway in the closed state, while opening of a single protopore of the double-pore channel would reflect mainly a movement of this side-chain toward the extracellular pore vestibule, with little rearrangement of the rest of the channel. Here we show that mutating this critical residue (Glu166) in the prototype Torpedo CLC-0 to alanine, serine, or lysine leads to constitutively open channels, whereas a mutation to aspartate strongly slowed down opening. Furthermore, we investigated the interaction of the small organic channel blocker p-chlorophenoxy-acetic acid (CPA) with the mutants E166A and E166S. Both mutants were strongly inhibited by CPA at negative voltages with a &gt;200-fold larger affinity than for wild-type CLC-0 (apparent KD at −140 mV ∼4 μM). A three-state linear model with an open state, a low-affinity and a high-affinity CPA-bound state can quantitatively describe steady-state and kinetic properties of the CPA block. The parameters of the model and additional mutagenesis suggest that the high-affinity CPA-bound state is similar to the closed configuration of the protopore gate of wild-type CLC-0. In the E166A mutant the glutamate side chain that occludes the permeation pathway is absent. Thus, if gating consists only in movement of this side-chain the mutant E166A should not be able to assume a closed conformation. It may thus be that fast gating in CLC-0 is more complex than anticipated from the bacterial structures.


Author(s):  
Marie-Rose Van Calsteren ◽  
Ricardo Reyes-Chilpa ◽  
Chistopher K Jankowski ◽  
Fleur Gagnon ◽  
Simón Hernández-Ortega ◽  
...  

The tropical tree Calophyllum brasiliense (Clusiaceae) grows in the rain forests from Brazil to Mexico. Its leaves, as well as those of other Calophyllum species, are rich sources of chromanone acids, such as apetalic acid, isoapetalic acid, and their derivatives. Apetalic acid has shown significant antimycobacterial activity. The biological activity of apetalic acid has been related to the configuration of three asymmetric centers and the stereochemistry of the molecule; however, the C-19 configuration in the acidic side chain has not been fully resolved. For this reason, the unequivocal determination of the absolute configuration by means of X-ray crystallography in a sample of unique homogeneous apetalic acid stereoisomer was the most important point to start this study. We prepared some chiral amides using the carboxyl group. We determined the C-19 stereochemistry of apetalic acid, and its specific chiral derivatives, using NMR, X-ray diffraction methods, and molecular mechanics. Finally, we observed that steric hindrance in the side chain of apetalic acid leads to restriction of rotation around the pivotal link C-10 and C-19 establishing chiral centers at C2(R), C3(S), and C19(R). We were able to separate derivatives of these two high-rotatory-barrier conformers of apetalic acid by forming diastereoisomeric amides with phenylglycine methyl ester having a chiral center at C-2’. Our results allowed the conclusion of the existence of atropisomerism in the apetalic acid molecule.


Pteridines ◽  
1990 ◽  
Vol 2 (3) ◽  
pp. 151-156 ◽  
Author(s):  
Shin Ichiro Takikawa ◽  
Sadao Matsuura

Summary Enzymatic conversion of stereoisomers of biopterin (3a-d) to the 7-oxo-biopterin isomers (4a-d) was performed with a new pterin 7-oxidase extracted from carp skin. The chiral centers of the 6-side chains of biopterin isomers were preserved during the conversion, and the four possible stereoisomers of 7-oxo-biopterin (4a-d) were obtained from the corresponding biopterin isomers (3a-d). HPLC and CD spectra studies showed that natural ichthyopterin is 2-amino-6-(L-erythro-1',2' -dihydroxypropyl)-4, 7(3H,8H)-pteridinedione (4a) which has the same L-erythro structure at the side chain as natural biopterin (3a). This fact suggests that ichthyopterin is biologically derived from biopterin in these fishes.


Sign in / Sign up

Export Citation Format

Share Document