scholarly journals Transmembrane signaling by the human insulin receptor kinase. Relationship between intramolecular beta subunit trans- and cis-autophosphorylation and substrate kinase activation.

1992 ◽  
Vol 267 (27) ◽  
pp. 19521-19528 ◽  
Author(s):  
A.L. Frattali ◽  
J.L. Treadway ◽  
J.E. Pessin
1989 ◽  
Vol 263 (3) ◽  
pp. 813-822 ◽  
Author(s):  
Y Fujita-Yamaguchi ◽  
D B Sacks ◽  
J M McDonald ◽  
D Sahal ◽  
S Kathuria

Since the studies on tyrosine phosphorylation of calmodulin by the insulin receptor kinase in vitro suggested that protamine and poly(L-lysine) may activate phosphorylation of the receptor beta subunit [Sacks & McDonald (1988) J. Biol. Chem. 263, 2377-2383], we examined the effects of a variety of basic polycations/proteins and polyamines on insulin receptor kinase activity. The insulin receptor purified from human placental membranes was incubated with each basic polycation/protein or polyamine and assayed for tyrosine-specific protein kinase activity by measuring 32P incorporation into the src-related peptide. At a concentration of 1 microM, poly(L-lysine) and poly(L-ornithine) markedly stimulated kinase activity, whereas poly(L-arginine) and histones H1 and H2B inhibited insulin receptor kinase. In contrast, at a concentration of 1 mM, three polyamines (spermine, spermidine and putrescine) did not alter kinase activity. Poly(L-lysine) and poly(L-ornithine) stimulated the insulin receptor kinase by 5-10-fold at concentrations of 0.1-1 microM. Protamine sulphate also showed a significant stimulatory effect at a concentration of 100 microM. Preincubation of the receptor with poly(L-lysine) or poly(L-ornithine) for 20-60 min resulted in maximal kinase activation. Poly(L-lysine), the most effective activator of the receptor kinase, was used to characterize further the mechanisms of the kinase activation. Poly(L-lysine) activates the insulin receptor kinase by increasing the Vmax. without changing the Km. Poly(L-lysine) markedly stimulates the kinase activity of insulin receptor preparations that have lost both basal kinase activity and the ability to be stimulated by insulin. Insulin and poly(L-lysine) also differed in their ability to stimulate the kinase activity of prephosphorylated receptors. Prephosphorylation of the receptors did not affect the stimulation of the kinase by insulin. In contrast, prephosphorylation of receptors resulted in a markedly enhanced ability of poly(L-lysine) to stimulate kinase activity. These studies suggest that the mechanisms by which poly(L-lysine) and insulin activate the kinase are different. In conjunction with other additional evidence, it is suggested that poly(L-lysine) interacts directly with the beta-subunit of the receptor, thereby activating the receptor kinase.


1988 ◽  
Vol 250 (1) ◽  
pp. 95-101 ◽  
Author(s):  
O Koshio ◽  
Y Akanuma ◽  
M Kasuga

H-35 rat hepatoma cells were labelled with [32P]orthophosphate and their insulin receptors isolated on wheat germ agglutinin (WGA)-agarose and anti-(insulin receptor) serum. The incubation of these cells with 10 mM-H2O2 for 10 min increased the phosphorylation of both the serine and tyrosine residues of the beta subunit of the insulin receptor. Next, insulin receptors were purified on WGA-agarose from control and H2O2-treated H-35 cells and the purified fractions incubated with [gamma-32P]ATP and Mn2+. Phosphorylation of the beta subunit of insulin receptors obtained from H2O2-treated cells was 150% of that of control cells. The kinase activity of the WGA-purified receptor preparation obtained from H2O2-treated cells, as measured by phosphorylation of src-related synthetic peptide, was increased about 4-fold over control cells. These data suggest that in intact cell systems, H2O2 may increase the insulin receptor kinase activity by inducing phosphorylation of the beta subunit of insulin receptor.


1999 ◽  
Vol 341 (3) ◽  
pp. 665-668 ◽  
Author(s):  
Zamal AHMED ◽  
Beverley J. SMITH ◽  
Kei KOTANI ◽  
Peter WILDEN ◽  
Tahir S. PILLAY

APS (adapter protein with a PH and SH2 domain) is the newest member of a family of tyrosine kinase adapter proteins including SH2-B and Lnk. We previously identified SH2-B as an insulin-receptor-binding protein and substrate [Kotani, Wilden and Pillay (1998) Biochem J. 335, 103-109]. Here we show that APS interacts with the insulin receptor kinase activation loop through its SH2 domain and insulin stimulates the tyrosine-phosphorylation of APS. Furthermore, the phosphorylation of activation-loop tyrosine residues 1158 and 1162 are required for this interaction.


Sign in / Sign up

Export Citation Format

Share Document