receptor binding protein
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 19)

H-INDEX

42
(FIVE YEARS 2)

mBio ◽  
2021 ◽  
Author(s):  
Huihui Kong ◽  
Shufang Fan ◽  
Kosuke Takada ◽  
Masaki Imai ◽  
Gabriele Neumann ◽  
...  

The hemagglutinin (HA) protein of influenza viruses serves as the receptor-binding protein and is the principal target of the host immune system. The antigenic epitopes in the receptor-binding region are known to tolerate mutations, but here, we show that even deletions of 12 or 16 amino acids in this region can be accommodated.


Author(s):  
Catarina L. Nogueira ◽  
Diana P. Pires ◽  
Rodrigo Monteiro ◽  
Sílvio B. Santos ◽  
Carla M. Carvalho

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255796
Author(s):  
Sarunporn Tandhavanant ◽  
Sirikamon Koosakunirand ◽  
Taniya Kaewarpai ◽  
Watcharapong Piyaphanee ◽  
Pornsawan Leaungwutiwong ◽  
...  

Serological assays to detect antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might contribute to confirming the suspected coronavirus disease 2019 (COVID-19) in patients not detected with molecular assays. Human antibodies that target the host angiotensin-converting enzyme 2-binding domain of the viral spike protein are a target for serodiagnosis and therapeutics. This study aimed to characterize the classes and subclasses of antibody responses to a recombinant receptor-binding protein (RBD) of SARS-CoV-2 in COVID-19 patients and investigated the reactivity of these antibodies in patients with other tropical infections and healthy individuals in Thailand. ELISAs for IgM, IgA, IgG and IgG subclasses based on RBD antigen were developed and tested with time series of 27 serum samples from 15 patients with COVID-19 and 60 samples from pre-COVID-19 outbreaks including acute dengue fever, murine typhus, influenza, leptospirosis and healthy individuals. Both RBD-specific IgA and IgG were detected in only 21% of the COVID-19 patients in the acute phase. The median IgA and IgG levels were significantly higher in the convalescent serum sample compared to the acute serum sample (P < 0.05). We observed the highest correlation between levels of IgG and IgA (rho = 0. 92). IgG1 and IgG3 were the major IgG subclasses detected in SARS-CoV-2 infection. Only acute IgG3 level was negatively associated with viral detection based on RT-PCR of ORF1ab gene (rho = -0.57). The median IgA and IgG levels in convalescence sera of COVID-19 patients were significantly higher than healthy individuals and convalescent sera of other febrile infectious patients. The analyses of antibody classes and subclasses provide insights into human immune responses against SARS-CoV-2 during natural infection and interpretation of antibody assays.


Cell Reports ◽  
2021 ◽  
Vol 36 (9) ◽  
pp. 109628
Author(s):  
Michael P. Doyle ◽  
Nurgun Kose ◽  
Viktoriya Borisevich ◽  
Elad Binshtein ◽  
Moushimi Amaya ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1462
Author(s):  
Peter Braun ◽  
Nadja Rupprich ◽  
Diana Neif ◽  
Gregor Grass

Bacteriophage receptor binding proteins (RBPs) are employed by viruses to recognize specific surface structures on bacterial host cells. Recombinant RBPs have been utilized for detection of several pathogens, typically as fusions with reporter enzymes or fluorescent proteins. Identification of Bacillus anthracis, the etiological agent of anthrax, can be difficult because of the bacterium’s close relationship with other species of the Bacillus cereussensu lato group. Here, we facilitated the identification of B. anthracis using two implementations of enzyme-linked phage receptor binding protein assays (ELPRA). We developed a single-tube centrifugation assay simplifying the rapid analysis of suspect colonies. A second assay enables identification of suspect colonies from mixed overgrown solid (agar) media derived from the complex matrix soil. Thus, these tests identified vegetative cells of B. anthracis with little processing time and may support or confirm pathogen detection by molecular methods such as polymerase chain reaction.


2021 ◽  
Author(s):  
Andrea N.W. Lim ◽  
Minmin Yen ◽  
Kimberley D. Seed ◽  
David W. Lazinski ◽  
Andrew Camilli

ICP2 is a virulent bacteriophage (phage) that preys on Vibrio cholerae. ICP2 was first isolated from cholera patient stool samples. Some of these stools also contained ICP2-resistant isogenic V. cholerae strains harboring missense mutations in the trimeric outer membrane porin protein OmpU, identifying it as the ICP2 receptor. In this study, we identify the ICP2 proteins that mediate interactions with OmpU by selecting for ICP2 host-range mutants within infant rabbits infected with a mixture of wild type and OmpU mutant strains. ICP2 host-range mutants, that can now infect OmpU mutant strains, had missense mutations in putative tail fiber gene gp25 and putative adhesin gp23. Using site-specific mutagenesis we show that single or double mutations in gp25 are sufficient to generate the host-range mutant phenotype. However, at least one additional mutation in gp23 is required for robust plaque formation on specific OmpU mutants. Mutations in gp23 alone were insufficient to give a host-range mutant phenotype. All ICP2 host-range mutants retained the ability to plaque on wild type V. cholerae cells. The strength of binding of host-range mutants to V. cholerae correlated with plaque morphology, indicating that the selected mutations in gp25 and gp23 restore molecular interactions with the receptor. We propose that ICP2 host-range mutants evolve by a two-step process where, first, gp25 mutations are selected for their broad host-range, albeit accompanied by low level phage adsorption. Subsequent selection occurs for gp23 mutations that further increase productive binding to specific OmpU alleles, allowing for near wild type efficiencies of adsorption and subsequent phage multiplication. Importance Concern over multidrug-resistant bacterial pathogens, including Vibrio cholerae, has led to a renewed interest in phage biology and their potential for phage therapy. ICP2 is a genetically unique virulent phage isolated from cholera patient stool samples. It is also one of three phages in a prophylactic cocktail shown to be effective in animal models of infection and the only one of the three that requires a protein receptor (OmpU). This study identifies an ICP2 tail fiber and a receptor binding protein and examines how ICP2 responds to the selective pressures of phage-resistant OmpU mutants. We found that this particular co-evolutionary arms race presents fitness costs to both ICP2 and V. cholerae.


2021 ◽  
Author(s):  
Andrea N.W. Lim ◽  
Minmin Yen ◽  
Kimberley D. Seed ◽  
David W. Lazinski ◽  
Andrew Camilli

AbstractICP2 is a virulent bacteriophage (phage) that preys on Vibrio cholerae. ICP2 was first isolated from cholera patient stool samples. Some of these stools also contained ICP2-resistant isogenic V. cholerae strains harboring missense mutations in the trimeric outer membrane porin protein OmpU, identifying it as the ICP2 receptor. In this study, we identify the ICP2 proteins that mediate interactions with OmpU by selecting for ICP2 host-range mutants within infant rabbits infected with a mixture of wild type and OmpU mutant strains. ICP2 host-range mutants had missense mutations in putative tail fiber gene gp25 and putative adhesin gp23. Using site-specific mutagenesis we show that single or double mutations in gp25 are sufficient to generate the host-range mutant phenotype. However, at least one additional mutation in gp23 is required for robust plaque formation on specific OmpU mutants. Mutations in gp23 alone were insufficient to give a host-range mutant phenotype. All ICP2 host-range mutants retained the ability to plaque on wild type V. cholerae cells. The strength of binding of host-range mutants to V. cholerae correlated with plaque morphology, indicating that the selected mutations in gp25 and gp23 restore molecular interactions with the receptor. We propose that ICP2 host-range mutants evolve by a two-step process where, first, gp25 mutations are selected for their broad host-range, albeit accompanied by low level phage adsorption. Subsequent selection occurs for gp23 mutations that further increase productive binding to specific OmpU alleles, allowing for near wild type efficiencies of adsorption and subsequent phage multiplication.ImportanceConcern over multidrug-resistant bacterial pathogens, including Vibrio cholerae, has led to a renewed interest in phage biology and their potential for phage therapy. ICP2 is a genetically unique virulent phage isolated from cholera patient stool samples. It is also one of three phages in a prophylactic cocktail shown to be effective in animal models of infection and the only one of the three that requires a protein receptor (OmpU). This study identifies a ICP2 tail fiber and a receptor binding protein and examines how ICP2 responds to the selective pressures of phage-resistant OmpU mutants. We found that this particular co-evolutionary arms race presents fitness costs to both ICP2 and V. cholerae.


2021 ◽  
Author(s):  
Michael P. Doyle ◽  
Nurgun Kose ◽  
Viktoriya Borisevich ◽  
Elad Binshtein ◽  
Moushimi Amaya ◽  
...  

AbstractHendra virus (HeV) and Nipah virus (NiV), the prototypic members of the Henipavirus (HNV) genus, are emerging, zoonotic paramyxoviruses known to cause severe disease across six mammalian orders, including humans (Eaton et al., 2006). While several research groups have made strides in developing candidate vaccines and therapeutics against henipaviruses, such countermeasures have not been licensed for human use, and significant gaps in knowledge about the human immune response to these viruses exist. To address these gaps, we isolated a large panel of human monoclonal antibodies (mAbs) from the B cells of an individual with prior occupation-related exposure to the equine HeV vaccine (Equivac® HeV). Competition-binding and hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies identified at least six distinct antigenic sites on the HeV/NiV receptor binding protein (RBP) that are recognized by human mAbs. Antibodies recognizing multiple antigenic sites potently neutralized NiV and/or HeV isolates in vitro. The most potent class of cross-reactive antibodies achieved neutralization by blocking viral attachment to the host cell receptors ephrin-B2 and ephrin-B3. Antibodies from this class mimic receptor binding by inducing a receptor-bound conformation to the HeV-RBP protein tetramer, exposing an epitope that appears to lie hidden in the interface between protomers within the HeV-RBP tetramer. Antibodies that recognize this cryptic epitope potently neutralized HeV and NiV. Flow cytometric studies using cell-surface-displayed HeV-RBP protein showed that cross-reactive, neutralizing mAbs from each of these classes cooperate for binding. In a highly stringent hamster model of NiVB infection, antibodies from both classes reduced morbidity and mortality and achieved synergistic protection in combination and provided therapeutic benefit when combined into two bispecific platforms. These studies identified multiple candidate mAbs that might be suitable for use in a cocktail therapeutic approach to achieve synergistic antiviral potency and reduce the risk of virus escape during treatment.


Sign in / Sign up

Export Citation Format

Share Document