scholarly journals Lysine 155 in beta-subunit is a catalytic residue of Escherichia coli F1 ATPase.

1993 ◽  
Vol 268 (10) ◽  
pp. 6989-6994
Author(s):  
A.E. Senior ◽  
S. Wilke-Mounts ◽  
M.K. al-Shawi
1989 ◽  
Vol 259 (2) ◽  
pp. 421-426 ◽  
Author(s):  
F A Kironde ◽  
D Parsonage ◽  
A E Senior

ATP synthesis by oxidative phosphorylation in Escherichia coli occurs in catalytic sites on the beta-subunits of F1-ATPase. Random mutagenesis of the beta-subunit combined with phenotypic screening is potentially important for studies of the catalytic mechanism. However, when applied to haploid strains, this approach is hampered by a preponderance of mutants in which assembly of F1-ATPase in vivo is defective, precluding enzyme purification. Here we mutagenized plasmids carrying the uncD (beta-subunit) gene with hydroxylamine or N-methyl-N'-nitro-N-nitrosoguanidine and isolated, by phenotypic screening and complementation tests, six plasmids carrying mutant uncD alleles. When the mutant plasmids were used to transform a suitable uncD- strain, assembly of F1-ATPase in vivo occurred in each case. Moreover, in one case (beta Gly-223----Asp) F1-ATPase assembly proceeded although it had previously been reported that this mutation, when present on the chromosome of a haploid strain, prevented assembly of the enzyme in vivo. Therefore, this work demonstrates an improved approach for random mutagenesis of the F1-beta-subunit. Six new mutant uncD alleles were identified: beta Cys-137----Tyr; beta Gly-142----Asp; beta Gly-146----Ser; beta Gly-207----Asp; beta-Gly-223----Asp; and a double mutant beta Pro-403----Ser,Gly-415----Asp which we could not separate. The first five of these lie within or very close to the predicted catalytic nucleotide-binding domain of the beta-subunit. The double mutant lies outside this domain; we speculate that the region around residues beta 403-415 is part of an alpha-beta intersubunit contact surface. Membrane ATPase and ATP-driven proton pumping activities were impaired by all six mutations. Purified F1-ATPase was obtained from each mutant and shown to have impaired specific ATPase activity.


1987 ◽  
Vol 262 (17) ◽  
pp. 8022-8026 ◽  
Author(s):  
D Parsonage ◽  
S Wilke-Mounts ◽  
A E Senior

1983 ◽  
Vol 210 (2) ◽  
pp. 395-403 ◽  
Author(s):  
A E Senior ◽  
L Langman ◽  
G B Cox ◽  
F Gibson

To facilitate study of the role of the beta-subunit in the membrane-bound proton-translocating ATPase of Escherichia coli, we identified mutant strains from which an F1-ATPase containing abnormal beta-subunits can be purified. Seventeen strains of E. coli, characterized by genetic complementation tests as carrying mutations in the uncD gene (which codes for the beta-subunit), were studied. The majority of these strains (11) were judged to be not useful, as their membranes lacked ATPase activity, and were either proton-permeable as prepared or remained proton-impermeable after washing with buffer of low ionic strength. A further two strains were of a type not hitherto reported, in that their membranes had ATPase activity, were proton-impermeable as prepared, and were not rendered proton-permeable by washing in buffer of low ionic strength. Presumably in these two strains F1-ATPase is not released in soluble form by this procedure. F1-ATPase of normal molecular size were purified from strains AN1340 (uncD478), AN937 (uncD430), AN938 (uncD431) and AN1543 (uncD484). F1-ATPase from strain AN1340 (uncD478) had 15% of normal specific Mg-dependent ATPase activity and 22% of normal ATP-synthesis activity. The F1-ATPase preparations from strains AN937, AN938 and AN1543 had respectively 1.7%, 1.8% and 0.2% of normal specific Mg-dependent ATPase activity, and each of these preparations had very low ATP-synthesis activity. The yield of F1-ATPase from the four strains described was almost twice that obtained from a normal haploid strain. The kinetics of Ca-dependent ATPase activity were unusual in each of the four F1-ATPase preparations. It is likely that these four mutant uncD F1-ATPase preparations will prove valuable for further experimental study of the F1-ATPase catalytic mechanism.


1990 ◽  
Vol 265 (35) ◽  
pp. 21567-21572
Author(s):  
J Miki ◽  
K Fujiwara ◽  
M Tsuda ◽  
T Tsuchiya ◽  
H Kanazawa

Sign in / Sign up

Export Citation Format

Share Document