scholarly journals Stimulation of interleukin-1 alpha and interleukin-1 beta production in human monocytes by protein phosphatase 1 and 2A inhibitors.

1993 ◽  
Vol 268 (8) ◽  
pp. 5802-5809
Author(s):  
S.J. Sung ◽  
J.A. Walters
1988 ◽  
Vol 81 (1) ◽  
pp. 237-244 ◽  
Author(s):  
J A Kern ◽  
R J Lamb ◽  
J C Reed ◽  
R P Daniele ◽  
P C Nowell

1997 ◽  
Vol 328 (2) ◽  
pp. 695-700 ◽  
Author(s):  
Mary BOARD

Previous work has shown that the C-1-substituted glucose-analogue N-acetyl-β-D-glucopyranosylamine (1-GlcNAc) is a competitive inhibitor of glycogen phosphorylase (GP) and stimulates the inactivation of this enzyme by GP phosphatase. In addition to its effects on GP, 1-GlcNAc also prevents the glucose-led activation of glycogen synthase (GS) in whole hepatocytes. Such an effect on GS was thought to be due to the formation of 1-GlcNAc-6-P by the action of glucokinase within the hepatocyte [Board, Bollen, Stalmans, Kim, Fleet and Johnson (1995) Biochem. J. 311, 845-852]. To investigate this possibility further, a pure preparation of 1-GlcNAc-6-P was synthesized. The effects of the phosphorylated glucose analogue on the activity of protein phosphatase 1 (PP1), the enzyme responsible for dephosphorylation and activation of GS, are reported. During the present study, 1-GlcNAc-6-P inhibited the activity of the glycogen-bound form of PP1, affecting both the GSb phosphatase and GPa phosphatase activities. A level of 50% inhibition of GSb phosphatase activity was achieved with 85 μM 1-GlcNAc-6-P in the absence of Glc-6-P and with 135 μM in the presence of 10 mM Glc-6-P. At either Glc-6-P concentration, 500 μM 1-GlcNAc-6-P completely inhibited activity. The Glc-6-P stimulation of the GPa phosphatase activity of PP1 was negated by 1-GlcNAc-6-P but there was no inhibition of the basal rate in the absence of Glc-6-P. 1-GlcNAc-6-P inhibition was specific for the glycogen-bound form of PP1 and did not inhibit the GSb phosphatase activity of the cytosolic form of the enzyme. The present work explains our previous observations on the inactivating effects on GS of incubating whole hepatocytes with 1-GlcNAc. These observations have their basis in the inhibition of glycogen-bound PP1 by 1-GlcNAc-6-P. A novel inhibitor of PP1, specific for the glycogen-bound form of the enzyme, is presented.


2019 ◽  
Vol 30 (5) ◽  
pp. 737-750 ◽  
Author(s):  
David Penton ◽  
Sandra Moser ◽  
Agnieszka Wengi ◽  
Jan Czogalla ◽  
Lena Lindtoft Rosenbaek ◽  
...  

BackgroundA number of cAMP-elevating hormones stimulate phosphorylation (and hence activity) of the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). Evidence suggests that protein phosphatase 1 (PP1) and other protein phosphatases modulate NCC phosphorylation, but little is known about PP1’s role and the mechanism regulating its function in the DCT.MethodsWe used ex vivo mouse kidney preparations to test whether a DCT-enriched inhibitor of PP1, protein phosphatase 1 inhibitor–1 (I1), mediates cAMP’s effects on NCC, and conducted yeast two-hybrid and coimmunoprecipitation experiments in NCC-expressing MDCK cells to explore protein interactions.ResultsTreating isolated DCTs with forskolin and IBMX increased NCC phosphorylation via a protein kinase A (PKA)–dependent pathway. Ex vivo incubation of mouse kidney slices with isoproterenol, norepinephrine, and parathyroid hormone similarly increased NCC phosphorylation. The cAMP-induced stimulation of NCC phosphorylation strongly correlated with the phosphorylation of I1 at its PKA consensus phosphorylation site (a threonine residue in position 35). We also found an interaction between NCC and the I1-target PP1. Moreover, PP1 dephosphorylated NCC in vitro, and the PP1 inhibitor calyculin A increased NCC phosphorylation. Studies in kidney slices and isolated perfused kidneys of control and I1-KO mice demonstrated that I1 participates in the cAMP-induced stimulation of NCC.ConclusionsOur data suggest a complete signal transduction pathway by which cAMP increases NCC phosphorylation via a PKA-dependent phosphorylation of I1 and subsequent inhibition of PP1. This pathway might be relevant for the physiologic regulation of renal sodium handling by cAMP-elevating hormones, and may contribute to salt-sensitive hypertension in patients with endocrine disorders or sympathetic hyperactivity.


Ensho ◽  
1996 ◽  
Vol 16 (2) ◽  
pp. 125-128
Author(s):  
Yoshitomi Aida ◽  
Minori Tanaka ◽  
Keisuke Kusumoto ◽  
Kensuke Nakatomi ◽  
Katsumasa Maeda

Sign in / Sign up

Export Citation Format

Share Document