scholarly journals Identification of a major binding site for complement C3 on the IgG1 heavy chain.

1993 ◽  
Vol 268 (8) ◽  
pp. 5866-5871
Author(s):  
J.M. Shohet ◽  
P. Pemberton ◽  
M.C. Carroll
1974 ◽  
Vol 139 (1) ◽  
pp. 135-149 ◽  
Author(s):  
Christopher E. Fisher ◽  
Elizabeth M. Press

The binding sites of rabbit antibodies with affinity for the haptenic group 4-azido-2-nitrophenyl-lysine have been specifically labelled by photolysis of the hapten–antibody complex. The extent of covalent labelling was 0.5–0.9mol of hapten bound/mol of antibody and, by using an immunoadsorbent, antibody with 1.3mol of hapten/mol was obtained. The antibody was specifically labelled in the binding site and the ratio of labelling of heavy and light chains was in the range 3.3–5.0. The labelled heavy chains were cleaved by CNBr treatment and after reduction and alkylation of the intrachain bonds, were digested with trypsin. Evidence is presented that two regions of the heavy chain, positions 29–34 and 95–114, together contain about 80% of the label on the heavy chain; these two regions respectively include two of the hypervariable regions of rabbit heavy chain.


1989 ◽  
Vol 109 (4) ◽  
pp. 1519-1528 ◽  
Author(s):  
H Miyata ◽  
B Bowers ◽  
E D Korn

Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F-actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI-extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP-sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin-binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.


1972 ◽  
Vol 128 (3) ◽  
pp. 499-508 ◽  
Author(s):  
G. W. J. Fleet ◽  
J. R. Knowles ◽  
R. R. Porter

The isolation of specific rabbit antibodies for the haptenic group 4-azido-2-nitrophenyl, is described. These antibodies bind 1.8–2.0mol of hapten [∈-(4-azido-2-nitrophenyl)-l-lysine]/mol with an association constant of nearly 107m-1 at 4°C. On photolysis of the antibody–hapten complex, resulting in the formation of an aryl nitrene at the binding site, hapten was covalently bound to the antibody, and the antibody binding site was blocked. The ratio of labelling of heavy- and light-chains was 2.5:1. Two small peptides were isolated from digests of labelled heavy-chain, indicating that some 13% of the label in the antibody was attached to cysteine-92 and to alanine-93. These residues are adjacent to the major hypervariable region in rabbit heavy-chain (residues 95–105).


1989 ◽  
Vol 9 (5) ◽  
pp. 1839-1849 ◽  
Author(s):  
Y T Yu ◽  
B Nadal-Ginard

A DNA fragment of the rat embryonic myosin heavy-chain promoter (MHCemb) has been found to specifically bind a nuclear factor (NFe) present in extracts prepared from mouse C2 myoblasts, myotubes, and HeLa cells. The nucleotide sequence of the binding site (BSe) has been identified as 5'-GTGTCAGTCA-3' and was located between -93 and -84. Transient expression studies on MHCemb promoter deletion constructs in C2 myoblasts and C2 myotubes suggested that NFe is a transcriptional factor. Deletion of the NFe-binding site resulted in four- to sixfold and twofold reduction of promoter activity in C2 myotubes and C2 myoblasts, respectively. Furthermore, point mutations at the BSe not only abolished the NFe-binding activity of the MHCemb promoter but also resulted in reduction of the promoter activity to levels similar to those of the deletion constructs in C2 myotubes, myoblasts, and Hela cells (four- to sixfold). Although BSe and the binding site of the recently identified transcriptional factors AP-1 and ATF share significant homology, the results from competition binding assays indicated that NFe is different from both AP-1 and ATF.


1987 ◽  
Vol 105 (5) ◽  
pp. 2011-2019 ◽  
Author(s):  
G S Blank ◽  
F M Brodsky

Two regions on the clathrin heavy chain that are involved in triskelion interactions during assembly have been localized on the triskelion structure. These regions were previously identified with anti-heavy chain monoclonal antibodies X19 and X35, which disrupt clathrin assembly (Blank, G. S., and F. M. Brodsky, 1986, EMBO (Eur. Mol. Biol. Organ.) J., 5:2087-2095). Antibody-binding sites were determined based on their reactivity with truncated triskelions, and were mapped to an 8-kD region in the middle of the proximal portion of the triskelion arm (X19) and a 6-kD region at the triskelion elbow (X35). The elbow site implicated in triskelion assembly was also shown to be included within a heavy chain region involved in binding the light chains and to constitute part of the light chain-binding site. We postulate that this region of the heavy chain binds to the interaction site identified on the light chains that has homology to intermediate filament proteins (Brodsky, F. M., C. J. Galloway, G. S. Blank, A. P. Jackson, H.-F. Seow, K. Drickamer, and P. Parham, 1987, Nature (Lond.), 326:203-205). These findings suggest the existence of a heavy chain site, near the triskelion elbow, which is involved in both intramolecular and intermolecular interactions during clathrin assembly.


1990 ◽  
Vol 10 (7) ◽  
pp. 3843-3846 ◽  
Author(s):  
K Nelms ◽  
B Van Ness

Octamer motifs contribute to the function and tissue specificity of immunoglobulin heavy- and light-chain gene promoters and the heavy-chain enhancer. A variant octamer-binding site within a conserved region of the human kappa light-chain gene enhancer which contributes to the function of this enhancer has been identified.


Sign in / Sign up

Export Citation Format

Share Document