rabbit antibody
Recently Published Documents


TOTAL DOCUMENTS

238
(FIVE YEARS 2)

H-INDEX

38
(FIVE YEARS 0)

Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 443
Author(s):  
Jui-Chuang Wu ◽  
Yin-Huan Chuang ◽  
Yu-Chun Wei ◽  
Chia-Chi Hsieh ◽  
Yuan-Hung Pong ◽  
...  

(1) Background: To further validate METCAM/MUC18 as a diagnostic biomarker for prostate cancer, a modified Lateral Flow Immune Assay (LFIA) with increased sensitivity and specificity was designed by taking advantage of the extremely high affinity between biotin and streptavidin and used. (2) Methods: The combination of a commercial biotinylated rabbit antibody (EPP11278), or the home-made biotinylated chicken antibody, and the nano-gold conjugated home-made chicken antibody or a commercial rabbit antibody (EPP11278), had the higher sensitivity and specificity in this modified LFIA to establish calibration curves from the two recombinant METCAM/MUC18 proteins and were used for determining METCAM/MUC18 concentrations in serum specimens from normal individuals, benign prostatic hyperplasia (BPH) patients, prostatic intraepithelial neoplasia (PIN) patients, prostate cancer patients with various Gleason scores, and treated patients. (3) Results: Data obtained by this modified LFIA were statistically better than traditional LFIA and prostate-specific antigen (PSA) test. Interestingly, serum METCAM/MUC18 concentrations were higher in pre-malignant PIN patients than prostate cancer patients and both were higher than normal individuals, BPH patients, and treated patients. Serum METCAM/MUC18 concentrations were directly proportional to most serum PSA. (4) Conclusions: Elevated serum METCAM/MUC18 concentrations may be used for predicting the malignant potential of prostate cancer at an early premalignant (PIN) stage, which is not achievable by the current PSA test.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 226
Author(s):  
Thomas Cafiero ◽  
Alvaro Toledo

The spirochete, Borrelia burgdorferi, has a large number of membrane proteins involved in a complex life cycle, that includes a tick vector and a vertebrate host. Some of these proteins also serve different roles in infection and dissemination of the spirochete in the mammalian host. In this spirochete, a number of proteins have been associated with binding to plasminogen or components of the extracellular matrix, which is important for tissue colonization and dissemination. GroEL is a cytoplasmic chaperone protein that has previously been associated with the outer membrane of Borrelia. A His-tag purified B. burgdorferi GroEL was used to generate a polyclonal rabbit antibody showing that GroEL also localizes in the outer membrane and is surface exposed. GroEL binds plasminogen in a lysine dependent manner. GroEL may be part of the protein repertoire that Borrelia successfully uses to establish infection and disseminate in the host. Importantly, this chaperone is readily recognized by sera from experimentally infected mice and rabbits. In summary, GroEL is an immunogenic protein that in addition to its chaperon role it may contribute to pathogenesis of the spirochete by binding to plasminogen and components of the extra cellular matrix.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3965 ◽  
Author(s):  
Constanza Stefania Meneses ◽  
Heine Yacob Müller ◽  
Daniel Eduardo Herzberg ◽  
Benjamín Uberti ◽  
Hedie Almagro Bustamante ◽  
...  

The role of glial cells in pain modulation has recently gathered attention. The objective of this study was to determine healthy spinal microglia and astrocyte morphology and disposition in equine spinal cord dorsal horns using Iba-1 and GFAP/Cx-43 immunofluorescence labeling, respectively. Five adult horses without visible wounds or gait alterations were selected. Spinal cord segments were obtained post-mortem for immunohistochemical and immunocolocalization assays. Immunodetection of spinal cord dorsal horn astrocytes was done using a polyclonal goat antibody raised against Glial Fibrillary Acidic Protein (GFAP) and a polyclonal rabbit antibody against Connexin 43 (Cx-43). For immunodetection of spinal cord dorsal horn microglia, a polyclonal rabbit antibody against a synthetic peptide corresponding to the C-terminus of ionized calcium-binding adaptor molecule 1 (Iba-1) was used. Epifluorescence and confocal images were obtained for the morphological and organizational analysis. Evaluation of shape, area, cell diameter, cell process length and thickness was performed on dorsal horn microglia and astrocyte. Morphologically, an amoeboid spherical shape with a mean cell area of 92.4 + 34 µm2 (in lamina I, II and III) was found in horse microglial cells, located primarily in laminae I, II and III. Astrocyte primary stem branches (and cellular bodies to a much lesser extent) are mainly detected using GFAP. Thus, double GFAP/Cx-43 immunolabeling was needed in order to accurately characterize the morphology, dimension and cell density of astrocytes in horses. Horse and rodent astrocytes seem to have similar dimensions and localization. Horse astrocyte cells have an average diameter of 56 + 14 µm, with a main process length of 28 + 8 µm, and thickness of 1.4 + 0.3 µm, mainly situated in laminae I, II and III. Additionally, a close association between end-point astrocyte processes and microglial cell bodies was found. These results are the first characterization of cell morphology and organizational aspects of horse spinal glia. Iba-1 and GFAP/Cx-43 can successfully immune-label microglia and astrocytes respectively in horse spinal cords, and thus reveal cell morphology and corresponding distribution within the dorsal horn laminae of healthy horses. The conventional hyper-ramified shape that is normally visible in resting microglial cells was not found in horses. Instead, horse microglial cells had an amoeboid spherical shape. Horse protoplasmic astroglia is significantly smaller and structurally less complex than human astrocytes, with fewer main GFAP processes. Instead, horse astrocytes tend to be similar to those found in rodent’s model, with small somas and large cell processes. Microglia and astrocytes were found in the more superficial regions of the dorsal horn, similarly to that previously observed in humans and rodents. Further studies are needed to demonstrate the molecular mechanisms involved in the neuron-glia interaction in horses.


2017 ◽  
Vol 429 (19) ◽  
pp. 2954-2973 ◽  
Author(s):  
Haiyong Peng ◽  
Thomas Nerreter ◽  
Jing Chang ◽  
Junpeng Qi ◽  
Xiuling Li ◽  
...  

2017 ◽  
Author(s):  
Constanza Stefania Meneses ◽  
Heine Yacob Müller ◽  
Daniel Eduardo Herzberg ◽  
Benjamín Uberti ◽  
Hedie Almagro Bustamante ◽  
...  

Role of glial cells in pain modulation has recently gathered attention. The objective of this study was to determine healthy spinal microglia and astrocyte morphology and disposition in equine spinal cord dorsal horns using Iba-1 and GFAP/Cx-43 immunofluorescence labeling, respectively. 5 adult horses without visible wounds or gait alterations were selected. Spinal cord segments were obtained post-mortem for immunohistochemical and immunocolocalization assays. Immunodetection of spinal cord dorsal horn astrocytes was done using a polyclonal goat antibody raised against Glial Fibrillary Acidic Protein (GFAP) and a polyclonal rabbit antibody against Connexin 43 (Cx-43). For immunodetection of spinal cord dorsal horn microglia, a polyclonal rabbit antibody against a synthetic peptide corresponding to the C-terminus of ionized calcium-binding adaptor molecule 1 (Iba-1) was used. Epifluorescence and confocal images were obtained for the morphological and organizational analysis. Evaluation of shape, area, cell diameter, cell process length and thickness was performed on dorsal horn microglia and astrocyte. Morphologically, an amoeboid o spherical shape with a mean cell area of 92.4 + 34 μm2 (in lamina I, II and III) was found in horse microglial cells, located primarily in laminae I, II and III. Astrocyte primary stem branches (and cellular bodies to a much lesser extent) are mainly detected using GFAP. Thus, double GFAP/Cx- immunostaining was needed in order to accurately characterize the morphology, dimension and cell density of astrocytes in horses. Horse and rodent astrocytes seem to have similar dimensions and localization. Horse astrocyte cells have an average diameter of 56 + 14 μm, with a main process length of 28 + 8 μm, and thickness of 1.4 + 0.3 μm, mainly situated in laminae I, II and III. Additionally, a close association between end-point astrocyte processes and microglial cell bodies was found. These results are the first characterization of cell morphology and organizational aspects of horse spinal glia. Iba-1 and GFAP/Cx-43 can successfully stain microglia and astrocytes respectively in horse spinal cords, and thus reveal cell morphology and corresponding distribution within the dorsal horn laminae of healthy horses. The conventional hyper-ramified shape that is normally visible in resting microglial cells was not found in horses. Instead, horse microglial cells had an amoeboid o spherical shape. Horse protoplasmic astroglia is significantly smaller and structurally less complex than human astrocytes, with fewer main GFAP processes. Instead, horse astrocytes tend to be similar to those found in rodent’s model, with small somas and large cell processes. Microglia and astrocytes were found in the more superficial regions of the dorsal horn, similarly to that previously observed in humans and rodents. Further studies are needed to demonstrate the molecular mechanisms involved in the neuron-glia interaction in horses.


2017 ◽  
Author(s):  
Constanza Stefania Meneses ◽  
Heine Yacob Müller ◽  
Daniel Eduardo Herzberg ◽  
Benjamín Uberti ◽  
Hedie Almagro Bustamante ◽  
...  

Role of glial cells in pain modulation has recently gathered attention. The objective of this study was to determine healthy spinal microglia and astrocyte morphology and disposition in equine spinal cord dorsal horns using Iba-1 and GFAP/Cx-43 immunofluorescence labeling, respectively. 5 adult horses without visible wounds or gait alterations were selected. Spinal cord segments were obtained post-mortem for immunohistochemical and immunocolocalization assays. Immunodetection of spinal cord dorsal horn astrocytes was done using a polyclonal goat antibody raised against Glial Fibrillary Acidic Protein (GFAP) and a polyclonal rabbit antibody against Connexin 43 (Cx-43). For immunodetection of spinal cord dorsal horn microglia, a polyclonal rabbit antibody against a synthetic peptide corresponding to the C-terminus of ionized calcium-binding adaptor molecule 1 (Iba-1) was used. Epifluorescence and confocal images were obtained for the morphological and organizational analysis. Evaluation of shape, area, cell diameter, cell process length and thickness was performed on dorsal horn microglia and astrocyte. Morphologically, an amoeboid o spherical shape with a mean cell area of 92.4 + 34 μm2 (in lamina I, II and III) was found in horse microglial cells, located primarily in laminae I, II and III. Astrocyte primary stem branches (and cellular bodies to a much lesser extent) are mainly detected using GFAP. Thus, double GFAP/Cx- immunostaining was needed in order to accurately characterize the morphology, dimension and cell density of astrocytes in horses. Horse and rodent astrocytes seem to have similar dimensions and localization. Horse astrocyte cells have an average diameter of 56 + 14 μm, with a main process length of 28 + 8 μm, and thickness of 1.4 + 0.3 μm, mainly situated in laminae I, II and III. Additionally, a close association between end-point astrocyte processes and microglial cell bodies was found. These results are the first characterization of cell morphology and organizational aspects of horse spinal glia. Iba-1 and GFAP/Cx-43 can successfully stain microglia and astrocytes respectively in horse spinal cords, and thus reveal cell morphology and corresponding distribution within the dorsal horn laminae of healthy horses. The conventional hyper-ramified shape that is normally visible in resting microglial cells was not found in horses. Instead, horse microglial cells had an amoeboid o spherical shape. Horse protoplasmic astroglia is significantly smaller and structurally less complex than human astrocytes, with fewer main GFAP processes. Instead, horse astrocytes tend to be similar to those found in rodent’s model, with small somas and large cell processes. Microglia and astrocytes were found in the more superficial regions of the dorsal horn, similarly to that previously observed in humans and rodents. Further studies are needed to demonstrate the molecular mechanisms involved in the neuron-glia interaction in horses.


2017 ◽  
Vol 49 (3) ◽  
pp. e305-e305 ◽  
Author(s):  
Justus Weber ◽  
Haiyong Peng ◽  
Christoph Rader

2016 ◽  
Vol 19 (4) ◽  
pp. 14-23
Author(s):  
Thinh Duc Nguyen ◽  
Thu Thi Nguyet Nguyen ◽  
Diem Ngoc Duong ◽  
Son Pham Ngoc Chu ◽  
Thuoc Linh Tran

Anti-chloramphenicol rabbit antibody was covalently bound to Sepharose CL 4B-CNBr gel at 5, 10 and 15 mg antibody per mL gel and was fed into columns to prepare three respective immunoaffinity chromatography columns for chloramphenicol (CAP) binding. Examination of CAP-binding efficiency of these columns being fed with 0.5, 1 and 10 ng CAP showed that the column with 10 mg antibody per ml gel (IAC-CAP-10 column) could bind more than 90 % of the CAP amount having been fed into the column at all three examined CAP amounts. This IAC-CAP-10 column showed a coefficient of variants (CV) between columns upon CAP binding of 5.18 % for 1 ng fed CAP and 1.98 % for 10 ng, respectively, a loading capacity of 153,37 ± 10,32 ng CAP, stable CAP-binding performance during at least 2 years of preservation at 4 °C. The coupling of this IAC-CAP-10 column with liquid chromatography - tandem mass spectrometry LC MS/MS could make CAP analysis become possible with a limit of detection LOD of 0.033 ng and a limit of quantification LOQ of 0.101 ng. The column could also bind to the other two phenicol antibiotics: florfenicol and thiamphenicol with a binding efficiency of 90.73 % for florfenicol and 84.29 % for thiamphenicol.


2016 ◽  
Vol 19 (4) ◽  
pp. 5-13
Author(s):  
Thinh Duc Nguyen ◽  
Thu Thi Nguyet Nguyen ◽  
Diem Ngoc Duong ◽  
Son Pham Ngoc Chu ◽  
Thuoc Linh Tran

Chloramphenicol (CAP) is a broad-spectrum antibiotic of high toxicity on human therefore it is being strictly controlled in food. We are interested in the development of a method of effective extraction of CAP in food based on the immunological principle using specific anti-CAP antibody combining with LC/MS/MS for the analysis of the residual CAP in food meeting the international standard. In this article, we reported experimental results on the preparation of anti-CAP rabbit antibody. Conjugative antigen between CAP and the carrier protein, bovine serum albumin, BSA (CAP-BSA) was successfully synthesized from chloramphenicol succinate and BSA with a BSA conjugating efficiency of more than 70 %, and the presence of CAP in the conjugative antigen was confirmed by ELISA method. The CAP-BSA antigen could cause good immune response in rabbit by the first antigen injection and induce the increasing production of anti-CAP antibody in rabbit serum from the third antigen injection which reached maximal value after the fifth injection. Anti-CAP antibody was purified from rabbit anti-serum in two steps: i) Removing of albumin and other non antibody proteins by 35–37 % saturated ammonium sulphate; ii) Elimination of anti-BSA antibody by the Sepharose-BSA specific affinity chromatography column. The ability of the purified anti-CAP antibody to interact and bind with CAP molecules in CAP-spiked sample was proved using a Sepharose-Anti-CAP antibody chromatography column which was made by conjugating the purified anti-CAP antibody with Sepharose beads.


2016 ◽  
Vol 24 ◽  
pp. S161 ◽  
Author(s):  
Robyn A.A. Oldham ◽  
Elliot M. Berinstein ◽  
Jeffrey A. Medin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document