scholarly journals PDGF-AB requires PDGF receptor alpha-subunits for high-affinity, but not for low-affinity, binding and signal transduction.

1993 ◽  
Vol 268 (6) ◽  
pp. 4473-4480
Author(s):  
R.A. Seifert ◽  
A. van Koppen ◽  
D.F. Bowen-Pope
1994 ◽  
Vol 13 (20) ◽  
pp. 4765-4775 ◽  
Author(s):  
D.J. Hilton ◽  
A.A. Hilton ◽  
A. Raicevic ◽  
S. Rakar ◽  
M. Harrison-Smith ◽  
...  

1992 ◽  
Vol 12 (8) ◽  
pp. 3415-3424 ◽  
Author(s):  
W M Kavanaugh ◽  
A Klippel ◽  
J A Escobedo ◽  
L T Williams

The activated platelet-derived growth factor (PDGF) receptor physically associates with p85, a subunit of phosphatidylinositol-3 kinase. Although this interaction may activate phosphatidylinositol-kinase and is crucial for PDGF-induced mitogenesis, it has not been shown whether p85 is modified in the process. p85 contains two SH2 (Src homology) domains, designated SH2-N and SH2-C. Recent experiments have shown that the SH2-C domain alone determines high-affinity binding of p85 to the PDGF receptor. The function of SH2-N, which binds receptors with lower affinity, is unknown. In this study, using a receptor-blotting technique, we find that p85 is modified by PDGF stimulation of intact cells. This modification involves inhibition of binding of the SH2-N region of p85 to the PDGF receptor. Studies with vanadate suggest that tyrosine phosphorylation of p85 is responsible for the modification of p85 detected by receptor blotting. Furthermore, recombinant p85 is modified in a similar manner when it is tyrosine phosphorylated in vitro by PDGF receptors. Tyrosine phosphorylation of p85 does not block binding of the SH2-C domain and therefore does not release p85 from high-affinity binding sites on the receptor in vitro. Instead, phosphorylation may regulate the ability of the SH2-N of p85 to bind to a different portion of the PDGF receptor or to another molecule in the signaling complex. This study provides the first evidence that p85 is tyrosine phosphorylated upon PDGF stimulation of cells and suggests that tyrosine phosphorylation of p85 regulates its activity or its interaction with other proteins.


Blood ◽  
1993 ◽  
Vol 82 (6) ◽  
pp. 1724-1731 ◽  
Author(s):  
NA Nicola ◽  
K Wycherley ◽  
AW Boyd ◽  
JE Layton ◽  
D Cary ◽  
...  

Abstract A panel of monoclonal antibodies was raised against the low-affinity human granulocyte-macrophage colony-stimulating factor (hGM-CSF) receptor alpha-chain expressed as recombinant protein on murine FDC-P1 cells. All the selected antibodies were of the IgG2A isotype and bound to protein A. They each recognized both native and recombinant receptors by indirect surface immunofluorescence and by immunoprecipitation. Several of the antibodies also recognized presumably denatured receptors as detected by immunoblotting of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three different epitopes on the extracellular domain of the GM-CSF receptor alpha-chain were defined by these antibodies, and two of the epitopes did not appear to be involved in binding hGM-CSF or in interactions with the beta-chain of the GM-CSF receptor that are required for high-affinity binding of GM-CSF. On the other hand, the epitope recognized by antibody 2B7–17-A appeared to be critically involved in the binding of GM-CSF because this antibody completely abrogated both high- and low- affinity binding of GM-CSF to native and recombinant receptors. Antibody 2B7–17-A had a relatively high affinity for the GM-CSF receptor alpha-chain (kd = 3 nmol/L) and slow dissociation kinetics (kd = 0.002 min-1). These properties made the 2B7–17-A antibody a potent inhibitor of hGM-CSF biologic action in several different bioassays, with a half-maximal inhibitory dose of about 6 nmol/L (1 microgram/mL). This antibody could prove useful in alleviating any pathologic states mediated by excess GM-CSF levels and in defining the domains of the GM- CSF receptor required for ligand binding.


Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3298-3306 ◽  
Author(s):  
M Weiss ◽  
C Yokoyama ◽  
Y Shikama ◽  
C Naugle ◽  
B Druker ◽  
...  

Abstract Human granulocyte-macrophage colony-stimulating factor (GM-CSF) controls the production, maturation, and function of cells in multiple hematopoietic lineages. These effects are mediated by a cell-surface receptor (GM-R) composed of alpha and beta subunits, each containing 378 and 881 amino acids, respectively. Whereas the alpha subunit exists as several isoforms that bind GM-CSF with low affinity, the beta common subunit (beta c) does not bind GM-CSF itself, but acts as a high- affinity converter for GM-CSF, interleukin-3 (IL-3), and IL-5 receptor alpha subunits. The cytoplasmic region of GM-R alpha consists of a membrane-proximal conserved region shared by the alpha 1 and alpha 2 isoforms and a C-terminal variable region that is divergent between alpha 1 and alpha 2. The cytoplasmic region of beta c contains membrane proximal serine and acidic domains. To investigate the amino acid sequences that influence signal transduction by this receptor complex, we constructed a series of cytoplasmic truncation mutants of the alpha 2 and beta subunits. To study these truncations, we stably transfected the IL-3-dependent murine cell line Ba/F3 with wild-type or mutant cDNAs. We found that the wild-type and mutant alpha subunits conferred similar low-affinity binding sites for human GM-CSF to Ba/F3, and the wild-type or mutant beta subunit converted some of these sites to high- affinity; the cytoplasmic domain of beta was unnecessary for this high- affinity conversion. Proliferation assays showed that the membrane- proximal conserved region of GM-R alpha and the serine-acidic domain of beta c are required for both cell proliferation and ligand-dependent phosphorylation of a 93-kD cytoplasmic protein. We suggest that these regions may represent an important signal transduction motif present in several cytokine receptors.


Blood ◽  
1993 ◽  
Vol 82 (6) ◽  
pp. 1724-1731
Author(s):  
NA Nicola ◽  
K Wycherley ◽  
AW Boyd ◽  
JE Layton ◽  
D Cary ◽  
...  

A panel of monoclonal antibodies was raised against the low-affinity human granulocyte-macrophage colony-stimulating factor (hGM-CSF) receptor alpha-chain expressed as recombinant protein on murine FDC-P1 cells. All the selected antibodies were of the IgG2A isotype and bound to protein A. They each recognized both native and recombinant receptors by indirect surface immunofluorescence and by immunoprecipitation. Several of the antibodies also recognized presumably denatured receptors as detected by immunoblotting of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three different epitopes on the extracellular domain of the GM-CSF receptor alpha-chain were defined by these antibodies, and two of the epitopes did not appear to be involved in binding hGM-CSF or in interactions with the beta-chain of the GM-CSF receptor that are required for high-affinity binding of GM-CSF. On the other hand, the epitope recognized by antibody 2B7–17-A appeared to be critically involved in the binding of GM-CSF because this antibody completely abrogated both high- and low- affinity binding of GM-CSF to native and recombinant receptors. Antibody 2B7–17-A had a relatively high affinity for the GM-CSF receptor alpha-chain (kd = 3 nmol/L) and slow dissociation kinetics (kd = 0.002 min-1). These properties made the 2B7–17-A antibody a potent inhibitor of hGM-CSF biologic action in several different bioassays, with a half-maximal inhibitory dose of about 6 nmol/L (1 microgram/mL). This antibody could prove useful in alleviating any pathologic states mediated by excess GM-CSF levels and in defining the domains of the GM- CSF receptor required for ligand binding.


1992 ◽  
Vol 12 (8) ◽  
pp. 3415-3424
Author(s):  
W M Kavanaugh ◽  
A Klippel ◽  
J A Escobedo ◽  
L T Williams

The activated platelet-derived growth factor (PDGF) receptor physically associates with p85, a subunit of phosphatidylinositol-3 kinase. Although this interaction may activate phosphatidylinositol-kinase and is crucial for PDGF-induced mitogenesis, it has not been shown whether p85 is modified in the process. p85 contains two SH2 (Src homology) domains, designated SH2-N and SH2-C. Recent experiments have shown that the SH2-C domain alone determines high-affinity binding of p85 to the PDGF receptor. The function of SH2-N, which binds receptors with lower affinity, is unknown. In this study, using a receptor-blotting technique, we find that p85 is modified by PDGF stimulation of intact cells. This modification involves inhibition of binding of the SH2-N region of p85 to the PDGF receptor. Studies with vanadate suggest that tyrosine phosphorylation of p85 is responsible for the modification of p85 detected by receptor blotting. Furthermore, recombinant p85 is modified in a similar manner when it is tyrosine phosphorylated in vitro by PDGF receptors. Tyrosine phosphorylation of p85 does not block binding of the SH2-C domain and therefore does not release p85 from high-affinity binding sites on the receptor in vitro. Instead, phosphorylation may regulate the ability of the SH2-N of p85 to bind to a different portion of the PDGF receptor or to another molecule in the signaling complex. This study provides the first evidence that p85 is tyrosine phosphorylated upon PDGF stimulation of cells and suggests that tyrosine phosphorylation of p85 regulates its activity or its interaction with other proteins.


Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3298-3306 ◽  
Author(s):  
M Weiss ◽  
C Yokoyama ◽  
Y Shikama ◽  
C Naugle ◽  
B Druker ◽  
...  

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) controls the production, maturation, and function of cells in multiple hematopoietic lineages. These effects are mediated by a cell-surface receptor (GM-R) composed of alpha and beta subunits, each containing 378 and 881 amino acids, respectively. Whereas the alpha subunit exists as several isoforms that bind GM-CSF with low affinity, the beta common subunit (beta c) does not bind GM-CSF itself, but acts as a high- affinity converter for GM-CSF, interleukin-3 (IL-3), and IL-5 receptor alpha subunits. The cytoplasmic region of GM-R alpha consists of a membrane-proximal conserved region shared by the alpha 1 and alpha 2 isoforms and a C-terminal variable region that is divergent between alpha 1 and alpha 2. The cytoplasmic region of beta c contains membrane proximal serine and acidic domains. To investigate the amino acid sequences that influence signal transduction by this receptor complex, we constructed a series of cytoplasmic truncation mutants of the alpha 2 and beta subunits. To study these truncations, we stably transfected the IL-3-dependent murine cell line Ba/F3 with wild-type or mutant cDNAs. We found that the wild-type and mutant alpha subunits conferred similar low-affinity binding sites for human GM-CSF to Ba/F3, and the wild-type or mutant beta subunit converted some of these sites to high- affinity; the cytoplasmic domain of beta was unnecessary for this high- affinity conversion. Proliferation assays showed that the membrane- proximal conserved region of GM-R alpha and the serine-acidic domain of beta c are required for both cell proliferation and ligand-dependent phosphorylation of a 93-kD cytoplasmic protein. We suggest that these regions may represent an important signal transduction motif present in several cytokine receptors.


1990 ◽  
Vol 63 (02) ◽  
pp. 193-203 ◽  
Author(s):  
John R Shainoff ◽  
Deborah J Stearns ◽  
Patricia M DiBello ◽  
Youko Hishikawa-Itoh

SummaryThe studies reported here probe the existence of a receptor-mediated mode of fibrin-binding by macrophages that is associated with the chemical change underlying the fibrinogen-fibrin conversion (the release of fibrinopeptides from the amino-terminal domain) without depending on fibrin-aggregation. The question is pursued by 1) characterization of binding in relation to fibrinopeptide content of both the intact protein and the CNBr-fragment comprising the amino-terminal domain known as the NDSK of the protein, 2) tests of competition for binding sites, and 3) photo-affinity labeling of macrophage surface proteins. The binding of intact monomers of types lacking either fibrinopeptide A alone (α-fibrin) or both fibrinopeptides A and B (αβ-fibrin) by peritoneal macrophages is characterized as proceeding through both a fibrin-specific low density/high affinity (BMAX ≃ 200–800 molecules/cell, KD ≃ 10−12 M) interaction that is not duplicated with fibrinogen, and a non-specific high density/low affinity (BMAX ≥ 105 molecules/cell, KD ≥ 10−6 M) interaction equivalent to the weak binding of fibrinogen. Similar binding characteristics are displayed by monocyte/macrophage cell lines (J774A.1 and U937) as well as peritoneal macrophages towards the NDSK preparations of these proteins, except for a slightly weaker (KD ≃ 10−10 M) high-affinity binding. The high affinity binding of intact monomer is inhibitable by fibrin-NDSK, but not fibrinogen-NDSK. This binding appears principally dependent on release of fibrinopeptide-A, because a species of fibrin (β-fibrin) lacking fibrinopeptide-B alone undergoes only weak binding similar to that of fibrinogen. Synthetic Gly-Pro-Arg and Gly-His-Arg-Pro corresponding to the N-termini of to the α- and the β-chains of fibrin both inhibit the high affinity binding of the fibrin-NDSKs, and the cell-adhesion peptide Arg-Gly-Asp does not. Photoaffinity-labeling experiments indicate that polypeptides with elec-trophoretically estimated masses of 124 and 187 kDa are the principal membrane components associated with specifically bound fibrin-NDSK. The binding could not be up-regulated with either phorbol myristyl acetate, interferon gamma or ADP, but was abolished by EDTA and by lipopolysaccharide. Because of the low BMAX, it is suggested that the high-affinity mode of binding characterized here would be too limited to function by itself in scavenging much fibrin, but may act cooperatively with other, less limited modes of fibrin binding.


Sign in / Sign up

Export Citation Format

Share Document