Modification of the 85-kilodalton subunit of phosphatidylinositol-3 kinase in platelet-derived growth factor-stimulated cells

1992 ◽  
Vol 12 (8) ◽  
pp. 3415-3424
Author(s):  
W M Kavanaugh ◽  
A Klippel ◽  
J A Escobedo ◽  
L T Williams

The activated platelet-derived growth factor (PDGF) receptor physically associates with p85, a subunit of phosphatidylinositol-3 kinase. Although this interaction may activate phosphatidylinositol-kinase and is crucial for PDGF-induced mitogenesis, it has not been shown whether p85 is modified in the process. p85 contains two SH2 (Src homology) domains, designated SH2-N and SH2-C. Recent experiments have shown that the SH2-C domain alone determines high-affinity binding of p85 to the PDGF receptor. The function of SH2-N, which binds receptors with lower affinity, is unknown. In this study, using a receptor-blotting technique, we find that p85 is modified by PDGF stimulation of intact cells. This modification involves inhibition of binding of the SH2-N region of p85 to the PDGF receptor. Studies with vanadate suggest that tyrosine phosphorylation of p85 is responsible for the modification of p85 detected by receptor blotting. Furthermore, recombinant p85 is modified in a similar manner when it is tyrosine phosphorylated in vitro by PDGF receptors. Tyrosine phosphorylation of p85 does not block binding of the SH2-C domain and therefore does not release p85 from high-affinity binding sites on the receptor in vitro. Instead, phosphorylation may regulate the ability of the SH2-N of p85 to bind to a different portion of the PDGF receptor or to another molecule in the signaling complex. This study provides the first evidence that p85 is tyrosine phosphorylated upon PDGF stimulation of cells and suggests that tyrosine phosphorylation of p85 regulates its activity or its interaction with other proteins.

1992 ◽  
Vol 12 (8) ◽  
pp. 3415-3424 ◽  
Author(s):  
W M Kavanaugh ◽  
A Klippel ◽  
J A Escobedo ◽  
L T Williams

The activated platelet-derived growth factor (PDGF) receptor physically associates with p85, a subunit of phosphatidylinositol-3 kinase. Although this interaction may activate phosphatidylinositol-kinase and is crucial for PDGF-induced mitogenesis, it has not been shown whether p85 is modified in the process. p85 contains two SH2 (Src homology) domains, designated SH2-N and SH2-C. Recent experiments have shown that the SH2-C domain alone determines high-affinity binding of p85 to the PDGF receptor. The function of SH2-N, which binds receptors with lower affinity, is unknown. In this study, using a receptor-blotting technique, we find that p85 is modified by PDGF stimulation of intact cells. This modification involves inhibition of binding of the SH2-N region of p85 to the PDGF receptor. Studies with vanadate suggest that tyrosine phosphorylation of p85 is responsible for the modification of p85 detected by receptor blotting. Furthermore, recombinant p85 is modified in a similar manner when it is tyrosine phosphorylated in vitro by PDGF receptors. Tyrosine phosphorylation of p85 does not block binding of the SH2-C domain and therefore does not release p85 from high-affinity binding sites on the receptor in vitro. Instead, phosphorylation may regulate the ability of the SH2-N of p85 to bind to a different portion of the PDGF receptor or to another molecule in the signaling complex. This study provides the first evidence that p85 is tyrosine phosphorylated upon PDGF stimulation of cells and suggests that tyrosine phosphorylation of p85 regulates its activity or its interaction with other proteins.


2014 ◽  
Vol 191 ◽  
pp. 236-245 ◽  
Author(s):  
Stefan Zielonka ◽  
Niklas Weber ◽  
Stefan Becker ◽  
Achim Doerner ◽  
Andreas Christmann ◽  
...  

1990 ◽  
Vol 10 (5) ◽  
pp. 2359-2366
Author(s):  
D K Morrison ◽  
D R Kaplan ◽  
S G Rhee ◽  
L T Williams

We investigated the interaction of phospholipase C-gamma (PLC-gamma) with wild-type and mutant forms of the platelet-derived growth factor (PDGF) beta-receptor both in vivo and in vitro. After PDGF treatment of CHO cell lines expressing wild-type or either of two mutant (delta Ki and Y825F) PDGF receptors, PLC-gamma became tyrosine phosphorylated and associated with the receptor proteins. The receptor association and tyrosine phosphorylation of PLC-gamma correlated with the ability of these receptors to mediate ligand-induced phosphatidylinositol turnover. However, both the delta Ki and Y825F mutant receptors were deficient in transmitting mitogenic signals, suggesting that the PDGF-induced tyrosine phosphorylation and receptor association of PLC-gamma are not sufficient to account for the growth-stimulatory activity of PDGF. Wild-type and delta Ki mutant PDGF receptor proteins expressed with recombinant baculovirus vectors also associated in vitro with mammalian PLC-gamma. However, baculovirus-expressed c-fms, v-fms, c-src, and Raf-1 proteins failed to associate with PLC-gamma under similar conditions. Phosphatase treatment of the baculovirus-expressed PDGF receptor greatly decreased its association with PLC-gamma. This requirement for receptor phosphorylation was also observed in vivo, where PLC-gamma could not associate with a mutant PDGF receptor (K602A) defective in autophosphorylation. PLC-gamma also coimmunoprecipitated with two other putative receptor substrates, the serine-threonine kinase Raf-1 and the 85-kilodalton phosphatidylinositol-3' kinase, presumably through its association with the ligand-activated receptor. Furthermore, baculovirus-expressed Raf-1 phosphorylated purified PLC-gamma in vitro at sites which showed increased serine phosphorylation in vivo in response to PDGF. These results suggest that PDGF directly influences PLC activity by inducing the association of PLC-gamma with a receptor signaling complex, resulting in increased tyrosine and serine phosphorylation of PLC-gamma.


2000 ◽  
Vol 20 (18) ◽  
pp. 6958-6969 ◽  
Author(s):  
Mitchell E. Garber ◽  
Timothy P. Mayall ◽  
Eric M. Suess ◽  
Jill Meisenhelder ◽  
Nancy E. Thompson ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Tat interacts with cyclin T1 (CycT1), a regulatory partner of CDK9 in the positive transcription elongation factor (P-TEFb) complex, and binds cooperatively with CycT1 to TAR RNA to recruit P-TEFb and promote transcription elongation. We show here that Tat also stimulates phosphorylation of affinity-purified core RNA polymerase II and glutathioneS-transferase–C-terminal-domain substrates by CycT1-CDK9, but not CycH-CDK7, in vitro. Interestingly, incubation of recombinant Tat–P-TEFb complexes with ATP enhanced binding to TAR RNA dramatically, and the C-terminal half of CycT1 masked binding of Tat to TAR RNA in the absence of ATP. ATP incubation lead to autophosphorylation of CDK9 at multiple C-terminal Ser and Thr residues, and full-length CycT1 (amino acids 728) [CycT1(1–728)], but not truncated CycT1(1–303), was also phosphorylated by CDK9. P-TEFb complexes containing a catalytically inactive CDK9 mutant (D167N) bound TAR RNA weakly and independently of ATP, as did a C-terminal truncated CDK9 mutant that was catalytically active but unable to undergo autophosphorylation. Analysis of different Tat proteins revealed that the 101-amino-acid SF2 HIV-1 Tat was unable to bind TAR with CycT1(1–303) in the absence of phosphorylated CDK9, whereas unphosphorylated CDK9 strongly blocked binding of HIV-2 Tat to TAR RNA in a manner that was reversed upon autophosphorylation. Replacement of CDK9 phosphorylation sites with negatively charged residues restored binding of CycT1(1–303)-D167N-Tat, and rendered D167N a more potent inhibitor of transcription in vitro. Taken together, these results demonstrate that CDK9 phosphorylation is required for high-affinity binding of Tat–P-TEFb to TAR RNA and that the state of P-TEFb phosphorylation may regulate Tat transactivation in vivo.


Virology ◽  
1981 ◽  
Vol 114 (2) ◽  
pp. 585-588 ◽  
Author(s):  
Michel Aguet ◽  
Ion Gresser ◽  
Ara G. Hovanessian ◽  
Marie-Thérèse Bandu ◽  
Brigitte Blanchard ◽  
...  

1992 ◽  
Vol 12 (9) ◽  
pp. 3903-3909
Author(s):  
C J Molloy ◽  
T P Fleming ◽  
D P Bottaro ◽  
A Cuadrado ◽  
S A Aaronson

Platelet-derived growth factor (PDGF) stimulation of NIH 3T3 cells leads to the rapid tyrosine phosphorylation of the GTPase-activating protein (GAP) and an associated 64- to 62-kDa tyrosine-phosphorylated protein (p64/62). To assess the functions of these proteins, we evaluated their phosphorylation state in normal NIH 3T3 cells as well as in cells transformed by oncogenically activated v-H-ras or overexpression of c-H-ras genes. No significant GAP tyrosine phosphorylation was observed in unstimulated cultures, while PDGF-BB induced rapid tyrosine phosphorylation of GAP in all cell lines analyzed. In NIH 3T3 cells, we found that PDGF stimulation led to the recovery of between 37 and 52% of GAP molecules by immunoprecipitation with monoclonal antiphosphotyrosine antibodies. Furthermore, PDGF exposure led to a rapid and sustained increase in the levels of p21ras bound to GTP, with kinetics similar to those observed for GAP tyrosine phosphorylation. The PDGF-induced increases in GTP-bound p21ras in NIH 3T3 cells were comparable to the steady-state level observed in serum-starved c-H-ras-overexpressing transformants, conditions in which these cells maintained high rates of DNA synthesis. These results imply that the level of p21ras activation following PDGF stimulation of NIH 3T3 cells is sufficient to support mitogenic stimulation. Addition of PDGF to c-H-ras-overexpressing cells also resulted in a rapid and sustained increase in GTP-bound p21ras. In these cells GAP, but not p64/62, showed increased tyrosine phosphorylation, with kinetics similar to those observed for increased GTP-bound p21ras. All of these findings support a role for GAP tyrosine phosphorylation in p21ras activation and mitogenic signaling.


Metallomics ◽  
2021 ◽  
Author(s):  
Afsana Mahim ◽  
Mohammad Mahim ◽  
David H Petering

Abstract The cellular trafficking pathways that conduct zinc to its sites of binding in functional proteins remain largely unspecified. In this study, the hypothesis was investigated that non-specific proteomic binding sites serve as intermediates in zinc trafficking. Proteome from pig kidney LLC-PK1 cells contains a large concentration of such sites, displaying an average conditional stability constant of 1010-11, that are dependent on sulfhydryl ligands to achieve high affinity binding of zinc. As a result, the proteome competes effectively with induced metallothionein for Zn2+ upon exposure of cells to extracellular Zn2+ or during in vitro direct competition. The reaction of added Zn2+ bound to proteome with apo-carbonic anhydrase was examined as a potential model for intracellular zinc trafficking. The extent of this reaction was inversely dependent upon proteome concentration and under cellular conditions thought to be negligible. The rate of reaction was strictly first order in both Zn2+ and apo-carbonic anhydrase and also considered to be insignificant in cells. Adding the low molecular weight fraction of cell supernatant to the proteome markedly enhanced the speed of this reaction, a phenomenon dependent on the presence of glutathione. In agreement, inclusion of glutathione accelerated the reaction in a concentration-dependent manner. The implications of abundant high affinity binding sites for Zn2+ within the proteome are considered in relation to their interaction with glutathione in the efficient delivery of Zn2+ to functional binding sites and in the operation of fluorescent zinc sensors as a tool to observe zinc trafficking.


Sign in / Sign up

Export Citation Format

Share Document