scholarly journals Mapping the ankyrin-binding site of the human erythrocyte anion exchanger

1989 ◽  
Vol 264 (16) ◽  
pp. 9665-9672 ◽  
Author(s):  
L Davis ◽  
S E Lux ◽  
V Bennett
1981 ◽  
Vol 256 (21) ◽  
pp. 11203-11208 ◽  
Author(s):  
S.N. Murthy ◽  
T. Liu ◽  
R.K. Kaul ◽  
H. Köhler ◽  
T.L. Steck

Blood ◽  
1990 ◽  
Vol 76 (1) ◽  
pp. 212-220 ◽  
Author(s):  
CH Joiner

Deoxygenation-induced cation movements in sickle cells were inhibited 80% to 85% by the anion transport inhibitor, 4,4′-diisothiocyano- 2,2′disulfostilbene (DIDS). Morphologic sickling was not altered by DIDS treatment, demonstrating that morphologic sickling was not sufficient to produce cation leaks in sickle cells. DIDS inhibition of deoxygenation-induced cation flux was not affected when l- replaced Cl- , indicating that conductive anion movements did not limit cation flux in deoxygenated cells treated with DIDS. Inhibition was irreversible after preincubation with DIDS at 37 degrees C for 20 minutes, and was not affected by the oxygenation state of cells at the time of drug exposure. Sulfate self-exchange was inhibited at lower DIDS concentrations than was deoxygenation-induced flux. Incubation of cells with DIDS at 4 degrees C produced progressive blockade of sulfate exchange, but did not alter deoxygenation-induced cation fluxes. Other stilbene disulfonates, including compounds incapable of covalent reactions, also inhibited deoxygenation-induced cation movements, although several other inhibitors of anion exchange did not. Dissociation of the inhibition of anion exchange and deoxygenation- induced cation flux indicates that the DIDS effect on deoxygenation- induced cation movements does not involve the well-characterized stilbene binding site of the anion exchanger. These data provide evidence for a membrane constituent on the external surface of oxygenated sickle cells capable of interacting with DIDS to prevent the increase in cation permeability associated with sickling.


1994 ◽  
Vol 13 (14) ◽  
pp. 3230-3235 ◽  
Author(s):  
D.N. Wang ◽  
V.E. Sarabia ◽  
R.A. Reithmeier ◽  
W. Kühlbrandt

1992 ◽  
Vol 100 (2) ◽  
pp. 301-339 ◽  
Author(s):  
P J Bjerrum

Chloride self-exchange across the human erythrocyte membrane at alkaline extracellular pH (pHO) and constant neutral intracellular pH (pH(i)) can be described by an exofacial deprotonatable reciprocating anion binding site model. The conversion of the transport system from the neutral to the alkaline state is related to deprotonation of a positively charged ionic strength- and substrate-sensitive group. In the absence of substrate ions ([ClO] = 0) the group has a pK of approximately 9.4 at constant high ionic strength (equivalent to approximately 150 mM KCl) and a pK of approximately 8.7 at approximately zero ionic strength. The alkaline ping-pong system (examined at constant high ionic strength) demonstrates outward recruitment of the binding sites with an asymmetry factor of approximately 0.2, as compared with the inward recruitment of the transport system at neutral pHO with an asymmetry factor of approximately 10. The intrinsic half-saturation constant for chloride binding, with [Cli] = [Clo], increased from approximately 30 mM at neutral to approximately 110 mM at alkaline pHO. The maximal transport rate was a factor of approximately 1.7 higher at alkaline pHO. This increase explains the stimulation of anion transport, the "modifier hump," observed at alkaline pHO. The translocation of anions at alkaline pHO was inhibited by deprotonation of another substrate-sensitive group with an intrinsic pK of approximately 11.3. This group together with the group with a pK of approximately 9.4 appear to form the essential part of the exofacial anion binding site. The effect of extracellular iodide inhibition on chloride transport as a function of pHO could, moreover, be simulated if three extracellular iodide binding constants were included in the model: namely, a competitive intrinsic iodide binding constant of approximately 1 mM in the neutral state, a self-inhibitor binding constant of approximately 120 mM in the neutral state, and a competitive intrinsic binding constant of approximately 38 mM in the alkaline state.


2005 ◽  
Vol 444 (2) ◽  
pp. 130-138 ◽  
Author(s):  
Carlos Vera ◽  
Jianmin Lao ◽  
Donald Hamelberg ◽  
Lanping Amy Sung

Science ◽  
2015 ◽  
Vol 350 (6261) ◽  
pp. 680-684 ◽  
Author(s):  
T. Arakawa ◽  
T. Kobayashi-Yurugi ◽  
Y. Alguel ◽  
H. Iwanari ◽  
H. Hatae ◽  
...  

Biochemistry ◽  
1996 ◽  
Vol 35 (21) ◽  
pp. 6931-6943 ◽  
Author(s):  
Douglas J. Scothorn ◽  
Walter E. Wojcicki ◽  
Eric J. Hustedt ◽  
Albert H. Beth ◽  
Charles E. Cobb

Sign in / Sign up

Export Citation Format

Share Document