scholarly journals ON THE MECHANISM OF THE CATALYTIC ACTION OF IRON SALTS. I

1924 ◽  
Vol 61 (1) ◽  
pp. 261-274
Author(s):  
Oskar Baudisch ◽  
Lars A. Welo
Keyword(s):  
Science ◽  
1909 ◽  
Vol 30 (781) ◽  
pp. 893-894
Author(s):  
W. J. S. Naunton
Keyword(s):  

2002 ◽  
Vol 2 (2) ◽  
pp. 91-98
Author(s):  
R. Winzenbacher ◽  
R. Schick ◽  
H.-H. Stabel ◽  
M. Jekel

Improved removal of particles during the treatment of natural aquatic suspensions has been achieved by pre-ozonation and the addition of small quantities of iron salts (βFe ≤ 0.1 mg.L-1; “Fe(III)-assisted filtration”) followed by rapid filtration. As shown by investigations on a large-scale installation at Lake Constance Water Supply, this procedure reliably reduces suspended solids by at least 2-3 powers of ten in long-term use. However, the high efficacy of Fe(III)-assisted filtration cannot be explained on the basis of known coagulation mechanisms (like adsorption-charge neutralization, co-precipitation). Instead, the essential step was found to be the conditioning of the filter medium by coating it with colloids containing Fe(OH)3, and this “Fe coating” process occurs only in the presence of alkaline earths (especially Ca2+). According to further experiments, the enhanced solid-liquid separation was ultimately traced to chemical interactions such as the formation of calcium-organic association structures between the iron hydroxides and other solids. For design of Fe(III)-assisted filtration steps, finally, a βCa/DOC ratio above 40 mg.mg-1 and pre-oxidation with ozone dosages not exceeding 2 mg O3/mg DOC was recommended.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 287
Author(s):  
Luciana S. Rocha ◽  
Érika M. L. Sousa ◽  
María V. Gil ◽  
João A. B. P. Oliveira ◽  
Marta Otero ◽  
...  

In view of a simple after-use separation, the potentiality of producing magnetic activated carbon (MAC) by intercalation of ferromagnetic metal oxide nanoparticles in the framework of a powder activated carbon (PAC) produced from primary paper sludge was explored in this work. The synthesis conditions to produce cost effective and efficient MACs for the adsorptive removal of pharmaceuticals (amoxicillin, carbamazepine, and diclofenac) from aqueous media were evaluated. For this purpose, a fractional factorial design (FFD) was applied to assess the effect of the most significant variables (Fe3+ to Fe2+ salts ratio, PAC to iron salts ratio, temperature, and pH), on the following responses concerning the resulting MACs: Specific surface area (SBET), saturation magnetization (Ms), and adsorption percentage of amoxicillin, carbamazepine, and diclofenac. The statistical analysis revealed that the PAC to iron salts mass ratio was the main factor affecting the considered responses. A quadratic linear regression model A = f(SBET, Ms) was adjusted to the FFD data, allowing to differentiate four of the eighteen MACs produced. These MACs were distinguished by being easily recovered from aqueous phase using a permanent magnet (Ms of 22–27 emu g−1), and their high SBET (741–795 m2 g−1) were responsible for individual adsorption percentages ranging between 61% and 84% using small MAC doses (35 mg L−1).


2013 ◽  
Vol 68 (12) ◽  
pp. 2584-2590 ◽  
Author(s):  
Yiqi Liu ◽  
Ramon Ganigué ◽  
Keshab Sharma ◽  
Zhiguo Yuan

Chemicals such as magnesium hydroxide (Mg(OH)2) and iron salts are widely used to control sulfide-induced corrosion in sewer networks composed of interconnected sewer pipe lines and pumping stations. Chemical dosing control is usually non-automatic and based on experience, thus often resulting in sewage reaching the discharge point receiving inadequate or even no chemical dosing. Moreover, intermittent operation of pumping stations makes traditional control theory inadequate. A hybrid automata-based (HA-based) control method is proposed in this paper to coordinate sewage pumping station operations by considering their states, thereby ensuring suitable chemical concentrations in the network discharge. The performance of the proposed control method was validated through a simulation study of a real sewer network using real sewage flow data. The physical, chemical and biological processes were simulated using the well-established SeweX model. The results suggested that the HA-based control strategy significantly improved chemical dosing control performance and sulfide mitigation in sewer networks, compared to the current common practice.


1931 ◽  
Vol 52 (9) ◽  
pp. 564-569
Author(s):  
Seizo KIMURA

Sign in / Sign up

Export Citation Format

Share Document