scholarly journals Characterization of calcium-binding sites in development-specific protein S of Myxococcus xanthus using site-specific mutagenesis.

1988 ◽  
Vol 263 (3) ◽  
pp. 1199-1203
Author(s):  
M Teintze ◽  
M Inouye ◽  
S Inouye
FEBS Letters ◽  
1995 ◽  
Vol 362 (1) ◽  
pp. 55-58 ◽  
Author(s):  
Lazaros T Kakalis ◽  
Michael Kennedy ◽  
Robert Sikkink ◽  
Frank Rusnak ◽  
Ian M Armitage

1995 ◽  
Vol 104 (2) ◽  
pp. 218-223 ◽  
Author(s):  
Richard B. Presland ◽  
James A. Bassuk ◽  
Janet K. Kimball ◽  
Beverly A. Dale

1989 ◽  
Vol 108 (2) ◽  
pp. 521-531 ◽  
Author(s):  
A Ayme-Southgate ◽  
P Lasko ◽  
C French ◽  
M L Pardue

A Drosophila melanogaster gene encoding a muscle specific protein was isolated by differential screening with RNA from primary cultures of myotubes. The gene encodes a 20-kD protein, muscle protein 20 (mp20), that is not detected in the asynchronous oscillatory flight muscles, but is found in most, if not all, other muscles (the synchronous muscles). The sequence of the protein, deduced from the DNA, contains two regions of 12 amino acids with significant similarity to high-affinity calcium-binding sites of other proteins. This protein is easily extracted from the contractile apparatus and thus does not seem to be a tightly bound structural component. The gene (located in polytene region 49F 9-13) is unique in the D. melanogaster genome and yields two transcripts, 1.0 and 0.9 kb long. The levels of the two transcripts are regulated differently during development, yet the coding regions of the two transcripts are identical.


1987 ◽  
Author(s):  
Bjorn Dahiback ◽  
Ake Lundwall ◽  
Andreas Hillarp ◽  
Johan Malm ◽  
Johan Stenflo

Protein S is a single chain (Mr 75.000) plasma protein. It is a cofactor to activated protein C (APC) in the regulation of coagulation factors Va and Villa. It has high affinity for negatively charged phospolipids and it forms a 1:1 complex with APC on phospholipid surfaces, platelets and on endothelial cells. Patients with heterozygous protein S deficiency have a high incidence of thrombosis. Protein S is cleaved by thrombin, which leads to a loss of calcium binding sites and of APC cofactor activity. Protein S has two to three high affinity (KD 20uM) calcium binding sites - unrelated to the Gla-region - that are unaffected by the thrombin cleavage. In human plasma protein S (25 mg/liter) circulates in two forms; free (approx. 40%) and in a 1:1 noncovalent complex (KD 1× 10-7M) with the complement protein C4b-binding protein (C4BP). C4BP (Mr 570.000) is composed of seven identical 70 kDa subunits that are linked by disulfide bonds. When visualized by electron microscopy, C4BP has a spiderlike structure with the single protein S binding site located close to the central core and one C4b-binding site on each of the seven tentacles. When bound to C4BP, protein S looses its APC cofactor activity, whereas the function-of C4BP is not directly affected by the protein S binding. Chymotrypsin cleaves each of the seven C4BP subunits close to the central core which results in the liberation of multiple 48 kDa “tentacte” fragments and the formation of a 160 kDa central core fragment. We have successfully isolated a 160 kDa central core fragment with essentially intact protein S binding ability.The primary structure of both bovine and human protein S has been determined and found to contain 635 and 634 amino acids, respectively, with 82 % homology to each other. Four different regions were distinguished; the N-terminal Gla-domain (position 1-45) was followed by a region which has two thrombin-sensitive bonds positioned within a disulfide loop. Position 76 to 244 was occupied by four repeats homologous to the epidermal growth factor (EGF) precursor. In the first EGF-domain a modified aspartic acid was identified at position 95, B-hydroxaspartic acid (Hya), and in corresponding positions in the three following EGF-domains (positions 136,178 and 217) we found B-hydroxyasparagine (Hyn). Hyn has not previously been identified in proteins. The C-terminal half of protein S (from position 245) shows no homology to the serine proteases but instead to human Sexual Hormon Binding Globulin (SHBG)(see separate abstract). To study the structure-function relationship we made eighteen monoclonal antibodies to human protein S. The effects of the monoclonals on the C4BP-protein S interaction and on the APC cofactor activity were analysed. Eight of the antibodies were calciumdependent, four of these were against the Gla-domain, two against the thrombin sensitive portion and two against the region bearing the high affinity calcium binding sites. Three of the monoclonals were dependent on the presence of chelating agents, EDTA or EGTA, and were probably directed against the high affinity calcium binding region. Three other monoclonals inhibited the protein S-C4BP interaction. At present, efforts are made to localize the epitopes to gain information about functionally important regions of protein S.


2016 ◽  
Vol 15 (03) ◽  
pp. 1650020 ◽  
Author(s):  
M. G. Khrenova ◽  
B. L. Grigorenko ◽  
J.-P. Zhang ◽  
P. Wang ◽  
A. V. Nemukhin

The all-atom model of the photosynthetic core complex composed of the light-harvesting system (LH1) and the reaction center (RC) from a thermophilic purple bacterium Thermochromatium tepidum is constructed. We compare the structural parameters of this complex embedded into the lipid bilayer to those reported for the recently resolved crystal structure of the LH1–RC. We focus on the local structure of the binding sites of the calcium ions regulating stability and optical spectra of the core complex. We show the differences between the computationally derived model and the crystal structure at the extramembrane region of the LH1 polypeptides where the calcium binding sites are located.


Biochemistry ◽  
1978 ◽  
Vol 17 (18) ◽  
pp. 3818-3825 ◽  
Author(s):  
Helga Ruebsamen ◽  
Amira T. Eldefrawi ◽  
Mohyee E. Eldefrawi ◽  
George P. Hess

Sign in / Sign up

Export Citation Format

Share Document