electron nuclear double resonance
Recently Published Documents


TOTAL DOCUMENTS

675
(FIVE YEARS 28)

H-INDEX

53
(FIVE YEARS 5)

2021 ◽  
Vol 16 ◽  
Author(s):  
Yaser Nejaty Jahromy

Background: Nitric oxide synthase (NOS) catalyzes the formation of nitric oxide (NO) and citrulline from L-arginine, dioxygen (O2), and nicotinamide adenine dinucleotide phosphate (NADPH) in a two-step reaction, with the enzyme-bound intermediate Nω-hydroxy-L-arginine (NHA). Previous electron paramagnetic resonance (EPR) studies of NOS reaction have shown that (6R, 1'R, 2'S)-6-(l',2'-dihydroxypropyl)-5,6,7,8-tetrahydropterin (H4B) acts as a single electron donor in both steps of the reaction, resulting in the transient generation of a tetrahydropterin cation radical (H4B•+). Results: H4B•+ can also be chemically generated in strongly acidic solutions. EPR studies of chemically generated H4B•+ and similar pterin radicals date back to the 1960s. However, the reported paramagnetic parameters of H4B•+ in NOS do not seem to match the corresponding reported parameters for either H4B•+ or other pterin centered radicals chemically generated in solution. In particular, the rather isotropic hyperfine coupling of ca. 45 MHz for 1H6 of H4B•+ in NOS is at least 15 MHz larger than that of H4B•+ or any other previously studies pterin solution radical. In the work reported here, a combination of 9.5 - 9.8 GHz contentious wave (cw-) EPR, 34GHz 1H electron nuclear double resonance (ENDOR), spectral simulation and Density Functional Theory (DFT) calculations were used to investigate this seeming discrepancy. Conclusion: We demonstrated that the differences in the paramagnetic parameters of the chemically generated H4B radicals in solutions and those of the H4B radicals in NOS are consistent with the presence of two different conformers of the same cation radical in the two media.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erik Schleicher ◽  
Stephan Rein ◽  
Boris Illarionov ◽  
Ariane Lehmann ◽  
Tarek Al Said ◽  
...  

AbstractFlavocoenzymes are nearly ubiquitous cofactors that are involved in the catalysis and regulation of a wide range of biological processes including some light-induced ones, such as the photolyase-mediated DNA repair, magnetoreception of migratory birds, and the blue-light driven phototropism in plants. One of the factors that enable versatile flavin-coenzyme biochemistry and biophysics is the fine-tuning of the cofactor’s frontier orbital by interactions with the protein environment. Probing the singly-occupied molecular orbital (SOMO) of the intermediate radical state of flavins is therefore a prerequisite for a thorough understanding of the diverse functions of the flavoprotein family. This may be ultimately achieved by unravelling the hyperfine structure of a flavin by electron paramagnetic resonance. In this contribution we present a rigorous approach to obtaining a hyperfine map of the flavin’s chromophoric 7,8-dimethyl isoalloxazine unit at an as yet unprecedented level of resolution and accuracy. We combine powerful high-microwave-frequency/high-magnetic-field electron–nuclear double resonance (ENDOR) with 13C isotopologue editing as well as spectral simulations and density functional theory calculations to measure and analyse 13C hyperfine couplings of the flavin cofactor in DNA photolyase. Our data will provide the basis for electronic structure considerations for a number of flavin radical intermediates occurring in blue-light photoreceptor proteins.


2021 ◽  
Vol 11 (16) ◽  
pp. 7727 ◽  
Author(s):  
Fadis F. Murzakhanov ◽  
Peter O. Grishin ◽  
Margarita A. Goldberg ◽  
Boris V. Yavkin ◽  
Georgy V. Mamin ◽  
...  

This article presents the results of a study of radiation-induced defects in various synthetic calcium phosphate (CP) powder materials (hydroxyapatite—HA and octacalcium phosphate—OCP) by electron paramagnetic resonance (EPR) spectroscopy at the X, Q, and W-bands (9, 34, 95 GHz for the microwave frequencies, respectively). Currently, CP materials are widely used in orthopedics and dentistry owing to their high biocompatibility and physico-chemical similarity with human hard tissue. It is shown that in addition to the classical EPR techniques, other experimental approaches such as ELDOR-detected NMR (EDNMR), electron spin echo envelope modulation (ESEEM), and electron-nuclear double resonance (ENDOR) can be used to analyze the electron–nuclear interactions of CP powders. We demonstrated that the value and angular dependence of the quadrupole interaction for 14N nuclei of a nitrate radical can be determined by the EDNMR method at room temperature. The ESEEM technique has allowed for a rapid analysis of the nuclear environment and estimation of the structural positions of radiation-induced centers in various crystal matrices. ENDOR spectra can provide information about the distribution of the nitrate radicals in the OCP structure.


2021 ◽  
Vol 118 (27) ◽  
pp. e2023615118
Author(s):  
Yvo Pokern ◽  
Benjamin Eltzner ◽  
Stephan F. Huckemann ◽  
Clemens Beeken ◽  
JoAnne Stubbe ◽  
...  

Electron–nuclear double resonance (ENDOR) measures the hyperfine interaction of magnetic nuclei with paramagnetic centers and is hence a powerful tool for spectroscopic investigations extending from biophysics to material science. Progress in microwave technology and the recent availability of commercial electron paramagnetic resonance (EPR) spectrometers up to an electron Larmor frequency of 263 GHz now open the opportunity for a more quantitative spectral analysis. Using representative spectra of a prototype amino acid radical in a biologically relevant enzyme, the Y122• in Escherichia coli ribonucleotide reductase, we developed a statistical model for ENDOR data and conducted statistical inference on the spectra including uncertainty estimation and hypothesis testing. Our approach in conjunction with 1H/2H isotopic labeling of Y122• in the protein unambiguously established new unexpected spectral contributions. Density functional theory (DFT) calculations and ENDOR spectral simulations indicated that these features result from the beta-methylene hyperfine coupling and are caused by a distribution of molecular conformations, likely important for the biological function of this essential radical. The results demonstrate that model-based statistical analysis in combination with state-of-the-art spectroscopy accesses information hitherto beyond standard approaches.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3539
Author(s):  
Andris Antuzevics ◽  
Guna Krieke ◽  
Haralds Ozols ◽  
Andris Fedotovs ◽  
Anatolijs Sarakovskis ◽  
...  

LaOCl doped with 0–10 mol% Cr was synthesized by thermal decomposition of chlorides. X-ray diffraction (XRD) analysis revealed that incorporation of chromium results in a decrease of the lattice parameter a and a simultaneous increase of the lattice parameter c. The local structure of chromium ions was studied with X-ray photoelectron (XPS), X-ray absorption (XANES), multifrequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy techniques. It was determined that synthesis in oxidizing atmosphere promotes the incorporation of chromium ions predominantly in the 5+ oxidation state. Changes of chromium oxidation state and local environment occur after a subsequent treatment in reducing atmosphere. Spin-Hamiltonian (SH) parameters for a Cr5+ and two types of Cr3+ centers in LaOCl were determined from the EPR spectra simulations.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 339
Author(s):  
Valentin G. Grachev ◽  
Galina I. Malovichko

Point intrinsic and extrinsic defects, especially paramagnetic ions of transition metals and rare-earth elements, have essential influence on properties of lithium niobate, LN and tantalate, LT, and often determine their suitability for numerous applications. Discussions about structures of the defects in LN/LT have lasted for decades. Many experimental methods facilitate progress in determining the structures of impurity centers. This paper gives current bird’s eye view on contributions of Electron Paramagnetic Resonance (EPR), and Electron Nuclear Double Resonance (ENDOR) studies to the determination of impurity defect structures in LN and LT crystals for a broad audience of researchers and students. Symmetry and charge compensation considerations restrict a number of possible structures. Comparison of measured angular dependences of ENDOR frequencies with calculated ones for Li and Nb substitution using dipole–dipole approximation allows unambiguously to determine the exact location of paramagnetic impurities. Models with two lithium vacancies explain angular dependencies of EPR spectra for Me3+ ions substituting for Li+ like Cr, Er, Fe, Gd, Nd, and Yb. Self-compensation of excessive charges through equalization of concentrations of Me3+(Li+) and Me3+(Nb5+) and appearance of interstitial Li+ in the structural vacancy near Me3+(Nb5+) take place in stoichiometric LN/LT due to lack of intrinsic defects.


Science ◽  
2020 ◽  
Vol 370 (6514) ◽  
pp. 356-359 ◽  
Author(s):  
Jorge L. Martinez ◽  
Sean A. Lutz ◽  
Hao Yang ◽  
Jiaze Xie ◽  
Joshua Telser ◽  
...  

High-valent iron species are key intermediates in oxidative biological processes, but hexavalent complexes apart from the ferrate ion are exceedingly rare. Here, we report the synthesis and structural and spectroscopic characterization of a stable Fe(VI) complex (3) prepared by facile one-electron oxidation of an Fe(V) bis(imido) (2). Single-crystal x-ray diffraction of 2 and 3 revealed four-coordinate Fe centers with an unusual “seesaw” geometry. 57Fe Mössbauer, x-ray photoelectron, x-ray absorption, and electron-nuclear double resonance (ENDOR) spectroscopies, supported by electronic structure calculations, support a low-spin (S = 1/2) d3 Fe(V) configuration in 2 and a diamagnetic (S = 0) d2 Fe(VI) configuration in 3. Their shared seesaw geometry is electronically dictated by a balance of Fe-imido σ- and π-bonding interactions.


Sign in / Sign up

Export Citation Format

Share Document