scholarly journals T cell recognition of hapten. Anatomy of T cell receptor binding of a H-2Kd-associated photoreactive peptide derivative.

1999 ◽  
Vol 274 (12) ◽  
pp. 8344
Author(s):  
Benedikt Kessler ◽  
Olivier Michielin ◽  
Christopher L. Blanchard ◽  
Irina Apostolou ◽  
Christaiane Delarbre ◽  
...  
1994 ◽  
Vol 180 (5) ◽  
pp. 1931-1935 ◽  
Author(s):  
A M Deckhut ◽  
Y Chien ◽  
M A Blackman ◽  
D L Woodland

Several studies have suggested that there is a direct interaction between the T cell receptor (TCR) and the major histocompatibility complex (MHC) molecule during T cell recognition of superantigen. To further investigate this possibility, we have analyzed T cell recognition of a bacterial superantigen, Staphylococcal enterotoxin B (SEB), presented by a series of mutant murine I-Ek molecules in which residues of either the alpha or beta chain predicted to interact with the TCR have been substituted. Individual T cell hybridomas gave distinct patterns of responsiveness to SEB presented by the I-E beta k mutants that could not be attributed to differences in the binding of SEB to the mutants. This effect appeared to be dependent on the TCR-alpha chain because some of these hybridomas expressed identical TCR transgenic beta chains. In contrast, none of the hybridomas gave distinct patterns of responsiveness to SEB presented by the I-E alpha k mutants. Taken together, these observations support the idea that there is a functional interaction between the alpha chain of the TCR and the beta chain of the MHC class II molecule. The data also support the idea that this interaction might enhance superantigen recognition in some cases.


1991 ◽  
Vol 32 (2) ◽  
pp. 110-118 ◽  
Author(s):  
Linda D. Barber ◽  
Vineeta Bal ◽  
Jonathan R. Lamb ◽  
Robyn E. O'Hehir ◽  
Janet Yendle ◽  
...  

2000 ◽  
Vol 192 (7) ◽  
pp. 965-976 ◽  
Author(s):  
D. Branch Moody ◽  
Mark R. Guy ◽  
Ethan Grant ◽  
Tan-Yun Cheng ◽  
Michael B. Brenner ◽  
...  

T cells recognize microbial glycolipids presented by CD1 proteins, but there is no information regarding the generation of natural glycolipid antigens within infected tissues. Therefore, we determined the molecular basis of CD1b-restricted T cell recognition of mycobacterial glycosylated mycolates, including those produced during tissue infection in vivo. Transfection of the T cell receptor (TCR) α and β chains from a glucose monomycolate (GMM)-specific T cell line reconstituted GMM recognition in TCR-deficient T lymphoblastoma cells. This TCR-mediated response was highly specific for natural mycobacterial glucose-6-O-(2R, 3R) monomycolate, including the precise structure of the glucose moiety, the stereochemistry of the mycolate lipid, and the linkage between the carbohydrate and the lipid. Mycobacterial production of antigenic GMM absolutely required a nonmycobacterial source of glucose that could be supplied by adding glucose to media at concentrations found in mammalian tissues or by infecting tissue in vivo. These results indicate that mycobacteria synthesized antigenic GMM by coupling mycobacterial mycolates to host-derived glucose. Specific T cell recognition of an epitope formed by interaction of host and pathogen biosynthetic pathways provides a mechanism for immune response to those pathogenic mycobacteria that have productively infected tissues, as distinguished from ubiquitous, but innocuous, environmental mycobacteria.


1993 ◽  
Vol 177 (2) ◽  
pp. 433-442 ◽  
Author(s):  
D L Woodland ◽  
H P Smith ◽  
S Surman ◽  
P Le ◽  
R Wen ◽  
...  

We have recently shown that recognition of the mouse mammary tumor virus 9-associated superantigen (vSAG-9) by murine V beta 17+ T cells is strongly influenced by the major histocompatibility complex (MHC) class II haplotype of the presenting cells, resulting in a form of MHC-restricted recognition. This finding was unexpected, because T cell recognition of another well-characterized retroviral superantigen, minor lymphocyte-stimulating antigen 1 (Mls-1), had been shown to be independent of the MHC haplotype of the presenting cell. To determine whether recognition of vSAG-9 and Mls-1 is fundamentally different, we undertook an extensive analysis of MHC haplotype influences on vSAG-9 and Mls-1 recognition by panels of T cell hybridomas. Our results show that, although most hybridomas recognized Mls-1 regardless of the MHC haplotype of the presenting cells, as previously described by others, some hybridomas exhibited unique patterns of MHC fine specificity. Thus, T cell recognition of vSAG-9 and Mls-1 is not fundamentally different, but the apparent differences can be explained in terms of frequency. The MHC fine specificity of individual Mls-1-reactive hybridomas was influenced by both V beta and non-V beta T cell receptor (TCR) elements. First, the influence of the V beta element was apparent from the observation that V beta 8.2+ hybridomas were significantly more MHC specific in their recognition of Mls-1 than V beta 8.1 hybridomas. Second, a role for the TCR alpha chain was implicated from the distinct patterns of fine specificity of Mls-1 reactivity among a panel of transgenic hybridomas that expressed an identical beta chain (V beta 8.1D beta 2J beta 2.3C beta 2). Sequence analysis revealed that junctional residues of the TCR alpha chain and/or V alpha/J alpha combinations influenced the MHC haplotype fine specificity for Mls-1. Third, D beta J beta influences were implicated, in that the transgenic hybridomas expressed distinctive patterns of Mls-1 fine specificity not represented among V beta 8.1+ nontransgenic hybridomas. The findings that T cell recognition of endogenous superantigen is MHC specific, and that this specificity correlates with non-V beta elements of the TCR, support the hypothesis that there is a direct interaction between the TCR and either polymorphic residues of the MHC class II molecule or haplotype-specific dominant peptides presented by class II.


Sign in / Sign up

Export Citation Format

Share Document