scholarly journals Crystal structures of ribonuclease HI active site mutants from Escherichia coli.

1993 ◽  
Vol 268 (29) ◽  
pp. 22092-22099
Author(s):  
K Katayanagi ◽  
M Ishikawa ◽  
M Okumura ◽  
M Ariyoshi ◽  
S Kanaya ◽  
...  
1991 ◽  
pp. 525-528
Author(s):  
M. P. Deonarain ◽  
N. S. Scrutton ◽  
A. Berry ◽  
R. N. Perham

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61325 ◽  
Author(s):  
Jodie M. Johnston ◽  
Ming Jiang ◽  
Zhihong Guo ◽  
Edward N. Baker

Author(s):  
Mirja Krause ◽  
Tiila-Riikka Kiema ◽  
Peter Neubauer ◽  
Rik K. Wierenga

The crystal structures are described of two variants of A-TIM: Ma18 (2.7 Å resolution) and Ma21 (1.55 Å resolution). A-TIM is a monomeric loop-deletion variant of triosephosphate isomerase (TIM) which has lost the TIM catalytic properties. Ma18 and Ma21 were identified after extensive directed-evolution selection experiments using anEscherichia coliL-arabinose isomerase knockout strain expressing a randomly mutated A-TIM gene. These variants facilitate better growth of theEscherichia coliselection strain in medium supplemented with 40 mML-arabinose. Ma18 and Ma21 differ from A-TIM by four and one point mutations, respectively. Ma18 and Ma21 are more stable proteins than A-TIM, as judged from CD melting experiments. Like A-TIM, both proteins are monomeric in solution. In the Ma18 crystal structure loop 6 is open and in the Ma21 crystal structure loop 6 is closed, being stabilized by a bound glycolate molecule. The crystal structures show only small differences in the active site compared with A-TIM. In the case of Ma21 it is observed that the point mutation (Q65L) contributes to small structural rearrangements near Asn11 of loop 1, which correlate with different ligand-binding properties such as a loss of citrate binding in the active site. The Ma21 structure also shows that its Leu65 side chain is involved in van der Waals interactions with neighbouring hydrophobic side-chain moieties, correlating with its increased stability. The experimental data suggest that the increased stability and solubility properties of Ma21 and Ma18 compared with A-TIM cause better growth of the selection strain when coexpressing Ma21 and Ma18 instead of A-TIM.


2006 ◽  
Vol 394 (2) ◽  
pp. 399-407 ◽  
Author(s):  
Yunqing Liu ◽  
Jing Liao ◽  
Bin Zhu ◽  
En-Duo Wang ◽  
Jianping Ding

aaRSs (aminoacyl-tRNA synthetases) are responsible for the covalent linking of amino acids to their cognate tRNAs via the aminoacylation reaction and play a vital role in maintaining the fidelity of protein synthesis. LeuRS (leucyl-tRNA synthetase) can link not only the cognate leucine but also the nearly cognate residues Ile and Met to tRNALeu. The editing domain of LeuRS deacylates the mischarged Ile–tRNALeu and Met–tRNALeu. We report here the crystal structures of ecLeuRS-ED (the editing domain of Escherichia coli LeuRS) in both the apo form and in complexes with Met and Ile at 2.0 Å, 2.4 Å, and 3.2 Å resolution respectively. The editing active site consists of a number of conserved amino acids, which are involved in the precise recognition and binding of the noncognate amino acids. The substrate-binding pocket has a rigid structure which has an optimal stereochemical fit for Ile and Met, but has steric hindrance for leucine. Based on our structural results and previously available biochemical data, we propose that ecLeuRS-ED uses a lock-and-key mechanism to recognize and discriminate between the amino acids. Structural comparison also reveals that all subclass Ia aaRSs share a conserved structure core consisting of the editing domain and conserved residues at the editing active site, suggesting that these enzymes may use a common mechanism for the editing function.


1999 ◽  
Vol 4 (2) ◽  
pp. 209-219 ◽  
Author(s):  
Sandra Macedo-Ribeiro ◽  
Wieger Hemrika ◽  
Rokus Renirie ◽  
Ron Wever ◽  
A. Messerschmidt

Sign in / Sign up

Export Citation Format

Share Document