River flow prediction using artificial neural networks: generalisation beyond the calibration range

2000 ◽  
Vol 233 (1-4) ◽  
pp. 138-153 ◽  
Author(s):  
C.E. Imrie ◽  
S. Durucan ◽  
A. Korre
2003 ◽  
Vol 7 (5) ◽  
pp. 693-706 ◽  
Author(s):  
E. Gaume ◽  
R. Gosset

Abstract. Recently Feed-Forward Artificial Neural Networks (FNN) have been gaining popularity for stream flow forecasting. However, despite the promising results presented in recent papers, their use is questionable. In theory, their “universal approximator‿ property guarantees that, if a sufficient number of neurons is selected, good performance of the models for interpolation purposes can be achieved. But the choice of a more complex model does not ensure a better prediction. Models with many parameters have a high capacity to fit the noise and the particularities of the calibration dataset, at the cost of diminishing their generalisation capacity. In support of the principle of model parsimony, a model selection method based on the validation performance of the models, "traditionally" used in the context of conceptual rainfall-runoff modelling, was adapted to the choice of a FFN structure. This method was applied to two different case studies: river flow prediction based on knowledge of upstream flows, and rainfall-runoff modelling. The predictive powers of the neural networks selected are compared to the results obtained with a linear model and a conceptual model (GR4j). In both case studies, the method leads to the selection of neural network structures with a limited number of neurons in the hidden layer (two or three). Moreover, the validation results of the selected FNN and of the linear model are very close. The conceptual model, specifically dedicated to rainfall-runoff modelling, appears to outperform the other two approaches. These conclusions, drawn on specific case studies using a particular evaluation method, add to the debate on the usefulness of Artificial Neural Networks in hydrology. Keywords: forecasting; stream-flow; rainfall-runoff; Artificial Neural Networks


2015 ◽  
Vol 37 ◽  
pp. 207
Author(s):  
Mohsen Rezaei ◽  
Ahmad Ali Akbari Motlaq ◽  
Ali Rezvani Mahmouei ◽  
Seyed Hojjatollah Mousavi

In our country, most of the rivers located in dry and warm climate areas are seasonal, and many of them have experienced floods. That, along with concerns about scarcity of water resources and the need to control surface water, makes identification, modeling, and simulation of rivers’ behavior, necessary for to long-term planning and proper and rational use of river flows potential. Rainfall phenomenon and the resulting runoff in watersheds, as well as predicting them are of nonlinear system types. Artificial neural networks are able to analyze and simulate phenomena in nonlinear and uncertain system where the relationship between the components and system parameters are not well known or describable. Shoor Ghayen River, with 100 km length is the biggest seasonal river of Qaenat city and the main source of water in Farrokhi storage dam. Therefore, in this study according to the rainfall and runoff statistic of Khonik Olya hydrometric and Ghayen synoptic stations between 1976-1977 and 2010-2011 water years, precipitation phenomena and river runoff was predicted. MATLAB software is used to perform calculations. For modeling artificial neural network, 85 percent of data were used for training the proposed method, the remaining 15% were used for validating the method using 10 neurons, and a network with an error of less than 5% was developed for each month. The maximum correlation in evaluation phase was for April with the value of 0.99, and the minimum was for June and August with a value of 0.92. Overall results indicate optimum performance of artificial neural networks in predicting runoff caused by rainfall. It is also found that better results can be achieved by standardizing the data.


Sign in / Sign up

Export Citation Format

Share Document