scholarly journals Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium tuberculosis

1975 ◽  
Vol 16 (4) ◽  
pp. 308-317
Author(s):  
K. Takayama ◽  
H.K. Schnoes ◽  
E.L. Armstrong ◽  
R.W. Boyle
2019 ◽  
Vol 12 (1) ◽  
pp. 27-49 ◽  
Author(s):  
Shahinda S.R. Alsayed ◽  
Chau C. Beh ◽  
Neil R. Foster ◽  
Alan D. Payne ◽  
Yu Yu ◽  
...  

Background:Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long α-alkyl-β-hydroxylated fatty acids provide protection to the tubercle bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation of regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, InhA, MabA, and FadD32 downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human’s, there have been some early drug discovery efforts towards developing potent and selective inhibitors.Objective:Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this mini-review, including their known small molecule inhibitors.Conclusion:Mycobacterial kinases and phosphatases involved in the MAs regulation may serve as a useful avenue for antitubercular therapy.


Author(s):  
Gildardo Rivera

Background: For decades, the quinoxaline 1,4-di-N-oxide ring has been considered a privileged structure to develop new antibacterial, antitumoural, and antiprotozoal agents, among others, however its mechanism of action is not clear. Objective : The main aim of this mini-review was to analyze the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives reported as antibacterial, antitumoural and antiprotozoal agents. Results : Initially, the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives against bacteria, tumoural cell lines, and parasites has been described as nonspecific, but recently, the results against different organisms have shown that these compounds have an inhibitory action on specific targets such as trypanothione reductase, triosephosphate isomerase, and other essential enzymes. Conclusion: In summary, quinoxaline 1,4-di-N-oxide is a scaffold to develop new anti-Mycobacterium tuberculosis, antitumoural and antiprotozoal agents, however, understanding the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives in each microorganism could contribute to the development of new, and more potent selective drugs.


2014 ◽  
Vol 180 ◽  
pp. 15-22 ◽  
Author(s):  
Wilma Groenewald ◽  
Mark S. Baird ◽  
Jan A. Verschoor ◽  
David E. Minnikin ◽  
Anna K. Croft

2010 ◽  
Vol 192 (14) ◽  
pp. 3661-3668 ◽  
Author(s):  
Daniel Barkan ◽  
Vivek Rao ◽  
George D. Sukenick ◽  
Michael S. Glickman

ABSTRACT The Mycobacterium tuberculosis cell envelope contains a wide variety of lipids and glycolipids, including mycolic acids, long-chain branched fatty acids that are decorated by cyclopropane rings. Genetic analysis of the mycolate methyltransferase family has been a powerful approach to assign functions to each of these enzymes but has failed to reveal the origin of cis cyclopropanation of the oxygenated mycolates. Here we examine potential redundancy between mycolic acid methyltransferases by generating and analyzing M. tuberculosis strains lacking mmaA2 and cmaA2, mmaA2 and cmaA1, or mmaA1 alone. M. tuberculosis lacking both cmaA2 and mmaA2 cannot cis cyclopropanate methoxymycolates or ketomycolates, phenotypes not shared by the mmaA2 and cmaA2 single mutants. In contrast, a combined loss of cmaA1 and mmaA2 had no effect on mycolic acid modification compared to results with a loss of mmaA2 alone. Deletion of mmaA1 from M. tuberculosis abolishes trans cyclopropanation without accumulation of trans-unsaturated oxygenated mycolates, placing MmaA1 in the biosynthetic pathway for trans-cyclopropanated oxygenated mycolates before CmaA2. These results define new functions for the mycolic acid methyltransferases of M. tuberculosis and indicate a substantial redundancy of function for MmaA2 and CmaA2, the latter of which can function as both a cis and trans cyclopropane synthase for the oxygenated mycolates.


1996 ◽  
Vol 40 (7) ◽  
pp. 1754-1756 ◽  
Author(s):  
T R Garbe ◽  
N S Hibler ◽  
V Deretic

Exposure to isoniazid induced the expression of several secreted proteins in Mycobacterium tuberculosis H37Rv. Two-dimensional gel electrophoresis and immunoblot analyses indicated that two of the prominent isonicotinic acid hydrazide-inducible polypeptides were members of the antigen 85 complex, recently demonstrated to have mycolyltransferase activity. We postulate the existence of an intermediate, whose production is inhibited by isonicotinic acid hydrazide, which plays a negative feedback regulatory role in the metabolism of mycolic acids are revealed by the overexpression of the antigen 85 complex. The approach described here relies on analyses of differential gene expression following exposure to inhibitors and may become a more general tool in dissecting the effects of antimicrobial agents.


2005 ◽  
Vol 187 (12) ◽  
pp. 4173-4186 ◽  
Author(s):  
Amit Singh ◽  
Radhika Gupta ◽  
R. A. Vishwakarma ◽  
P. R. Narayanan ◽  
C. N. Paramasivan ◽  
...  

ABSTRACT We had recently reported that the mymA operon (Rv3083 to Rv3089) of Mycobacterium tuberculosis is regulated by AraC/XylS transcriptional regulator VirS (Rv3082c) and is important for the cell envelope of M. tuberculosis. In this study, we further show that a virS mutant (MtbΔvirS) and a mymA mutant (Mtbmym::hyg) of M. tuberculosis exhibit reduced contents and altered composition of mycolic acids along with the accumulation of saturated C24 and C26 fatty acids compared to the parental strain. These mutants were markedly more susceptible to major antitubercular drugs at acidic pH and also showed increased sensitivity to detergent (sodium dodecyl sulfate) and to acidic stress than the parental strain. We show that disruption of virS and mymA genes impairs the ability of M. tuberculosis to survive in activated macrophages, but not in resting macrophages, suggesting the importance of the mymA operon in protecting the bacterium against harsher conditions. Infection of guinea pigs with MtbΔvirS, Mtbmym::hyg, and the parental strain resulted in an ∼800-fold-reduced bacillary load of the mutant strains compared with the parental strain in spleens, but not in the lungs, of animals at 20 weeks postinfection. Phenotypic traits were fully complemented upon reintroduction of the virS gene into MtbΔvirS. These observations show the important role of the mymA operon in the pathogenesis of M. tuberculosis at later stages of the disease.


Sign in / Sign up

Export Citation Format

Share Document