Comparative determination of structural parameters and conformational changes of proteins by small-angle scattering, crystallography and hydrodynamic analysis

1996 ◽  
Vol 383 (1-3) ◽  
pp. 223-229 ◽  
Author(s):  
Helmut Durchschlag ◽  
Peter Zipper
2017 ◽  
Vol 73 (9) ◽  
pp. 710-728 ◽  
Author(s):  
Jill Trewhella ◽  
Anthony P. Duff ◽  
Dominique Durand ◽  
Frank Gabel ◽  
J. Mitchell Guss ◽  
...  

In 2012, preliminary guidelines were published addressing sample quality, data acquisition and reduction, presentation of scattering data and validation, and modelling for biomolecular small-angle scattering (SAS) experiments. Biomolecular SAS has since continued to grow and authors have increasingly adopted the preliminary guidelines. In parallel, integrative/hybrid determination of biomolecular structures is a rapidly growing field that is expanding the scope of structural biology. For SAS to contribute maximally to this field, it is essential to ensure open access to the information required for evaluation of the quality of SAS samples and data, as well as the validity of SAS-based structural models. To this end, the preliminary guidelines for data presentation in a publication are reviewed and updated, and the deposition of data and associated models in a public archive is recommended. These guidelines and recommendations have been prepared in consultation with the members of the International Union of Crystallography (IUCr) Small-Angle Scattering and Journals Commissions, the Worldwide Protein Data Bank (wwPDB) Small-Angle Scattering Validation Task Force and additional experts in the field.


2020 ◽  
Vol 53 (2) ◽  
pp. 326-334
Author(s):  
Richard K. Archibald ◽  
Mathieu Doucet ◽  
Travis Johnston ◽  
Steven R. Young ◽  
Erika Yang ◽  
...  

A consistent challenge for both new and expert practitioners of small-angle scattering (SAS) lies in determining how to analyze the data, given the limited information content of said data and the large number of models that can be employed. Machine learning (ML) methods are powerful tools for classifying data that have found diverse applications in many fields of science. Here, ML methods are applied to the problem of classifying SAS data for the most appropriate model to use for data analysis. The approach employed is built around the method of weighted k nearest neighbors (wKNN), and utilizes a subset of the models implemented in the SasView package (https://www.sasview.org/) for generating a well defined set of training and testing data. The prediction rate of the wKNN method implemented here using a subset of SasView models is reasonably good for many of the models, but has difficulty with others, notably those based on spherical structures. A novel expansion of the wKNN method was also developed, which uses Gaussian processes to produce local surrogate models for the classification, and this significantly improves the classification accuracy. Further, by integrating a stochastic gradient descent method during post-processing, it is possible to leverage the local surrogate model both to classify the SAS data with high accuracy and to predict the structural parameters that best describe the data. The linking of data classification and model fitting has the potential to facilitate the translation of measured data into results for both novice and expert practitioners of SAS.


1988 ◽  
Vol 132 ◽  
Author(s):  
G. Wallner ◽  
E. Jorra ◽  
H. Franz ◽  
J. Peisl ◽  
R. Birringer ◽  
...  

ABSTRACTThe microstructure of nanocrystalline Pd was investigated by small angle scattering of neutrons and X-rays. The samples were prepared by compacting small crystallites produced by evaporation and condensation in an inert gas atmosphere. The strong scattering signal is interpreted to arise from crystallites embedded in a matrix of incoherent interfaces. Size distributions were deduced from the scattering curves. They consist of two parts: the crystallite size distribution dictated by the production process, and a structureless contribution due to the correlation in the spatial arrangement of the crystallites. The crystallite size distribution may be described by a log-normal distribution centred at R=2nm. The characteristic form of the correlation contribution arises from the dense packing of non-spherical crystallites. From the scattering cross-section in absolute units the volume fraction vc of crystallites was obtained as vc≈0.3, and the mean atomic density ρi in the interfaces as ρi≈0.52. The change of structural parameters during thermal annealing of the samples was studied. Up to high temperatures an appreciable volume fraction of crystallites with nearly unchanged size remains along with large particles.


Sign in / Sign up

Export Citation Format

Share Document