Simulations of the gas flux distribution for different gas showers and filament geometries on the large-area deposition of amorphous silicon by hot-wire CVD

2002 ◽  
Vol 299-302 ◽  
pp. 36-41 ◽  
Author(s):  
A. Pflűger ◽  
B. Schröder
2001 ◽  
Vol 395 (1-2) ◽  
pp. 61-65 ◽  
Author(s):  
Andrea Ledermann ◽  
Urban Weber ◽  
Chandrachur Mukherjee ◽  
Bernd Schroeder

2003 ◽  
Vol 430 (1-2) ◽  
pp. 73-77 ◽  
Author(s):  
Andrea Pflüger ◽  
Bernd Schröder ◽  
Hans-Jörg Bart

2005 ◽  
Vol 870 ◽  
Author(s):  
Subhendu Guha ◽  
Jeffrey Yang

AbstractLarge-area deposition of thin-film amorphous silicon alloy triple-junction solar cells on lightweight and flexible stainless steel substrate is described. The proprietary roll-to-roll operation enables continuous depositions of sophisticated multi-layer structures. The deposition methods include sputtering and plasma-enhanced chemical vapor depositions. Spectrumsplitting triple-junction solar cell design, manufacturing processes, and product applications are presented.


1999 ◽  
Vol 557 ◽  
Author(s):  
Scott Morrison ◽  
Ken Coates ◽  
Jianping Xi ◽  
Arun Madan

AbstractFor the “Hot Wire” chemical vapor deposition technique (HWCVD) method to be applicable for photovoltaic applications, certain critical technical issues need to be addressed and resolved such as: lifetime of the filaments, reproducibility, large area demonstration of the material and stable devices. We have developed a new approach (patent applied for) which addresses some of these problems, specifically longevity of the filaments and reproducibility of the materials produced. The new filament material used has so far shown no appreciable degradation even after deposition of >200 μm of amorphous silicon (a-Si). We report that this can produce “state-ofthe-art” a-Si with a dark conductivity of <10-10 (Ohm*cm)-1 and photoconductivity of >10-5 (Ohm*cm)-1 this material can also be doped p- or n-type. We also provide data using XRD as well as the Raman spectra. These materials have been incorporated into simple Schottky barrier structures. The development of microcrystalline silicon materials is also discussed.


1997 ◽  
Vol 467 ◽  
Author(s):  
J. Kuske ◽  
U. Stephan ◽  
W. Nowak ◽  
S. Röhlecke ◽  
A. Kottwitz

ABSTRACTThe production of amorphous silicon devices usually requires large area, high-deposition-rate plasma reactors. Non-uniformity of the film thickness at high power and deposition rate is found to be an important factor for large area deposition.Increasing the radio frequency from the conventional 13.56 MHz up to VHF has demonstrated advantages for the deposition of a-Si:H films, including higher deposition rates and lower particle generation. The use of VHF for large area deposition leads to the generation of standing waves and evanescent waveguide modes at the electrode surface and on the power feeding lines. Thereby increasing the non-uniformity of the film thickness. The uniformity of the film thickness for an excitation frequency strongly depends on the deposition parameters e.g. pressure, input power, silane flow and the value of load impedances. With increasing exciting frequencies the range of deposition parameters for obtaining uniform films narrows.Subsequently it is shown that for a large-area plasma-box reactor (500 × 600 mm2 plate size) with a double-sided RF electrode, the non-uniformity of the film decreases due to a homoge-neization of the electrode voltage distribution by using multiple power supplies and load impedances on the end of the RF electrode. The uniformity errors decrease from ±20% to ±2.4% (27.12MHz) and from ±40% to ±5.9% (54.24MHz). Experimental results of the film uniformity will be discussed in dependence on excitation frequencies and the deposition parameters.


1981 ◽  
Vol 42 (C4) ◽  
pp. C4-671-C4-674
Author(s):  
M. Matsumura ◽  
Y. Uchida

Sign in / Sign up

Export Citation Format

Share Document