Large-area Deposition of Amorphous Silicon Alloys Using a Roll-to-roll Operation

2005 ◽  
Vol 870 ◽  
Author(s):  
Subhendu Guha ◽  
Jeffrey Yang

AbstractLarge-area deposition of thin-film amorphous silicon alloy triple-junction solar cells on lightweight and flexible stainless steel substrate is described. The proprietary roll-to-roll operation enables continuous depositions of sophisticated multi-layer structures. The deposition methods include sputtering and plasma-enhanced chemical vapor depositions. Spectrumsplitting triple-junction solar cell design, manufacturing processes, and product applications are presented.

1989 ◽  
Vol 165 ◽  
Author(s):  
G. H. Lin ◽  
M. Kapur ◽  
J. O'M. Bockris

AbstractHigh and low bandgap amorphous silicon thin film alloys (a-Si:Al, a-Si:Se, a-Si:S, and a-Si:Ga) were prepared by plasma-enhanced chemical vapor deposition. It was found that Al and Ga amorphous silicon alloys are low bandgap materials whereas a:SiS and a:SiSe are high bandgap semiconductors. The optical band gap of these systems could be changed from 1.0 eV to 2.0 eV, depending on the alloying element and its concentration in the film. The dark to light conductivity ratio was measured. The elemental content and distribution was analyzed by the SIMS and EPMA techniques. The results show that some of the amorphous silicon alloys studied are promising materials for multi-bandgap photovoltaic devices.


1994 ◽  
Vol 336 ◽  
Author(s):  
X. Deng ◽  
M. Izu ◽  
K. L. Narasimhan ◽  
S. R. Ovshinsky

ABSTRACTWe report results of stability tests of 4 ft2 triple-junction a-Si alloy photovoltaic (PV) Modules. These Modules were produced in ECD's 2 Megawatt (MW) continuous, roll-to-roll PV Manufacturing line during the early stage of optimization. The stable module efficiency after 600 hours of 1 sun light soaking at approximately 50°C under load, is 8%. This is the highest stable efficiency for large area (≥4 ft2) a-Si alloy PV Modules Made in a production line.


1999 ◽  
Vol 557 ◽  
Author(s):  
J. Yang ◽  
S. Guha

AbstractOne of the most effective techniques used to obtain high quality amorphous silicon alloys is the use of hydrogen dilution during film growth. The resultant material exhibits a more ordered microstructure and gives rise to high efficiency solar cells. As the hydrogen dilution increases, however, a threshold is reached, beyond which microcrystallites begin to form rapidly. In this paper, we review some of the interesting features associated with the thin film materials obtained from various hydrogen dilutions. They include the observation of linear-like objects in the TEM micrograph, a shift of the principal Si TO band in the Raman spectrum, a sharp, low temperature peak in the H2 evolution spectrum, a shift of the wagging mode in the IR spectrum, and a narrowing of the Si (111) peak in the X-ray diffraction pattern. These spectroscopic tools have allowed us to optimize deposition conditions to near the threshold of microcrystallinity and obtain desired high quality materials. Incorporation of the improved materials into device configuration has significantly enhanced the solar cell performance. Using a spectral-splitting, triple-junction configuration, the spectral response of a typical high efficiency device spans from below 350 nm to beyond 950 nm with a peak quantum efficiency exceeding 90%; the triple stack generates a photocurrent of 27 mA/cm2. This paper describes the effect of the improved materials on various solar cell structures, including a 13% active-area, stable triple-junction device.


1992 ◽  
Vol 7 (7) ◽  
pp. 1805-1808
Author(s):  
Yoshihisa Watanabe ◽  
Yoshikazu Nakamura ◽  
Shigekazu Hirayama ◽  
Yoshimasa Yamaguchi

Hydrogenated amorphous carbon (a–C:H) films on stainless steel (AISI430) substrate oxidized in air at 1273 K were prepared from a gas mixture of methane and hydrogen by an rf plasma chemical vapor deposition, and thermally stimulated exoelectron emission (TSEE) was studied for the x-ray irradiated a–C:H films. Glow curves and energy distributions of TSEE from the 80- and 280-nm a–C:H films and from the AISI430 substrate have been measured under ultrahigh vacuum conditions. It was found that the glow curve from the 80-nm a–C:H film was similar to that from the AISI430 substrate, but it was quite different from that from the 280-nm film; the values of the mean energy of exoelectrons at the glow peak temperatures from the 80-nm a–C:H film are almost the same as those from the substrate but are much lower than those of the 280-nm film. The surfaces of 80- and 280-nm a–C:H films are observed with the scanning electron microscope (SEM). Observations by SEM show that the 80-nm film has relatively large-sized clusters of films and the stainless steel substrate still appears in some places, but the surface of the 280-nm film is completely covered by the carbon films. From these results, we propose that TSEE from the 80-nm film originates mainly from the oxide films on the stainless steel substrate and TSEE from the 280-nm film originates from the film itself. Thus, TSEE can be applied to characterize the surface of thin films.


2011 ◽  
Vol 1321 ◽  
Author(s):  
K. Beernink ◽  
A. Banerjee ◽  
J. Yang ◽  
K. Lord ◽  
F. Liu ◽  
...  

ABSTRACTUnited Solar Ovonic has leveraged its history of making amorphous silicon solar cells on stainless steel substrates to develop amorphous silicon alloy (a-Si:H)-based solar cells and modules on ∼25 μm thick polymer substrate using high-throughput roll-to-roll deposition technology for space and near-space applications. The solar cells have a triple-junction a-Si:H/a-SiGe:H/a-SiGe:H structure deposited by conventional plasma enhanced CVD (PECVD) using roll-to-roll processing. The cells have distinct advantages in terms of high specific power (W/kg), high flexibility, ruggedness, rollability for stowage, and irradiation resistance. The large area (23.9 cm x 32.1 cm) individual cells manufactured in large quantity can be readily connected into modules and have achieved initial, 25 °C, AM0 aperture-area efficiency of 9.8% and initial specific power of 1200 W/kg. We have conducted light-soak studies and measured the temperature coefficient of the current-voltage characteristics to determine the stable values at an expected operating temperature of 60 °C. The stable total-area efficiency and specific power at 60 °C are 7.2% and 950 W/kg, respectively. In this paper, we review the challenges and progress made in development of the cells, highlight some applications, and discuss current efforts aimed at improving performance.


1993 ◽  
Vol 297 ◽  
Author(s):  
E. Fortunato ◽  
M. Vieira ◽  
L. Ferreira ◽  
C.N. Carvalho ◽  
G. Lavareda ◽  
...  

We have developed a rectangular dual-axis large area Position Sensitive Detector (PSD), with 5 cm × 5 cm detection area, based on PIN hydrogenated amorphous silicon (a-Si:H) technology, produced by Plasma Enhanced Chemical Vapor Deposition (PECVD). The metal contacts are located in the four edges of the detected area, two of them located on the back side of the ITO/PIN/A1 structure and the others two located in the front side. The key factors of the detectors resolution and linearity are the thickness uniformity of the different layers, the geometry and the contacts location. Besides that, edge effects on the sensor's corner disturb the linearity of the detector. In this paper we present results concerning the linearity of the detector as well as its optoelectronic characteristics and the role of the i-layer thickness on the final sensor performances.


Sign in / Sign up

Export Citation Format

Share Document