Dynamic response of a cylindrical shell imperfectly bonded to a surrounding continuum of infinite extent

1981 ◽  
Vol 78 (2) ◽  
pp. 257-267 ◽  
Author(s):  
S. Chonan
1971 ◽  
Vol 5 (2) ◽  
pp. 75-76
Author(s):  
ROBERT J. ROSS ◽  
JAO-SHIUN KAO

1979 ◽  
Vol 46 (4) ◽  
pp. 772-778 ◽  
Author(s):  
G. E. Cummings ◽  
H. Brandt

A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, in a potential fluid. The shell may be excited by any radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. The numerical results are compared to experimental results for a 1/12-scale model of a nuclear-reactor core-support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies are within 15 percent of experimental results. A sample application compares the numerical technique to an analytical solution for shell beam modes. The comparison resolves an uncertainty concerning the proper effective mass to use in the analytical technique.


2013 ◽  
Vol 631-632 ◽  
pp. 864-869
Author(s):  
Fu Yin Gao ◽  
Yuan Long ◽  
Chong Ji ◽  
Chang Xiao Zhang

Experimental researches were presented on dynamic characteristics of Q235 steel cylindrical shell impacted-explosive laterally by 75g cylindrical TNT dynamite at the center.The dynamic response was obtained under different distances with different setting ways of explosive sources.By means of an explicit nonlinear dynamic finite element computer code LS-DYNA,the nonlinear dynamic response process of cylindrical shell subjected to laterally explosion loading were numerically simulated with ALE coupling method. The numerical simulation results were in good agreement with experimental data. The results provided important reference for the blast-resistant properties analysis and safety assessment of oil-gas pipes safety.


2013 ◽  
Vol 333-335 ◽  
pp. 2151-2155
Author(s):  
Xue Feng Han ◽  
Yan Dong Wang ◽  
Tao Wang ◽  
Tong Chao Ding ◽  
Hong Guang Jia

In order to study the dynamic response of the cylindrical shell structure which is similar to the missile cabin under the combined effects of axial compressive load and radial aerodynamic load, the equilibrium equation of dynamic response of cylindrical shell is derived based on the Hamiltons principle. The displacement response of cylindrical shell is calculated through employing the numerical method. The calculation results show that the axial displacement response and the radial displacement response of cylindrical shell are much greater than the circumferential displacement response; the radial displacement will be maximum when the excitation frequencies are 285Hz, 594Hz, 1039Hz, 1062Hz, 1093Hz, 1962Hz and 1987Hz; the axial displacement will be maximum when the corresponding excitation frequencies are 81Hz and 294Hz; the peak values of displacement response in non-load plane are not all obtained at the resonance frequency and a certain effect is generated due to the modal coupling.


Sign in / Sign up

Export Citation Format

Share Document