Vitamin E inhibits cyclosporin A and H2O2 promoted epstein–barr virus (EBV) transformation of human B cells as assayed by EBV oncogene LMP1 expression

2003 ◽  
Vol 113 (2) ◽  
pp. 228-233 ◽  
Author(s):  
Changguo Chen ◽  
K.S Reddy ◽  
T.D Johnston ◽  
T.T Khan ◽  
D Ranjan
2008 ◽  
Vol 21 (4) ◽  
pp. 201-208 ◽  
Author(s):  
Changguo Chen ◽  
Hoonbae Jeon ◽  
Thomas D. Johnston ◽  
Roberto Gedaly ◽  
Patrick P. McHugh ◽  
...  

Oncogene ◽  
2009 ◽  
Vol 29 (4) ◽  
pp. 503-515 ◽  
Author(s):  
S Lacoste ◽  
E Wiechec ◽  
A G dos Santos Silva ◽  
A Guffei ◽  
G Williams ◽  
...  

2001 ◽  
Vol 100 (2) ◽  
pp. 166-170 ◽  
Author(s):  
Changuo Chen ◽  
Thomas D. Johnston ◽  
K.Sudhakar Reddy ◽  
J.Clint Merrick ◽  
Michael Mastrangelo ◽  
...  

2020 ◽  
Vol 117 (42) ◽  
pp. 26318-26327
Author(s):  
Kamonwan Fish ◽  
Federico Comoglio ◽  
Arthur L. Shaffer ◽  
Yanlong Ji ◽  
Kuan-Ting Pan ◽  
...  

Epstein–Barr virus (EBV) infects human B cells and reprograms them to allow virus replication and persistence. One key viral factor in this process is latent membrane protein 2A (LMP2A), which has been described as a B cell receptor (BCR) mimic promoting malignant transformation. However, how LMP2A signaling contributes to tumorigenesis remains elusive. By comparing LMP2A and BCR signaling in primary human B cells using phosphoproteomics and transcriptome profiling, we identified molecular mechanisms through which LMP2A affects B cell biology. Consistent with the literature, we found that LMP2A mimics a subset of BCR signaling events, including tyrosine phosphorylation of the kinase SYK, the calcium initiation complex consisting of BLNK, BTK, and PLCγ2, and its downstream transcription factor NFAT. However, the majority of LMP2A-induced signaling events markedly differed from those induced by BCR stimulation. These included differential phosphorylation of kinases, phosphatases, adaptor proteins, transcription factors such as nuclear factor κB (NF-κB) and TCF3, as well as widespread changes in the transcriptional output of LMP2A-expressing B cells. LMP2A affected apoptosis and cell-cycle checkpoints by dysregulating the expression of apoptosis regulators such as BCl-xL and the tumor suppressor retinoblastoma-associated protein 1 (RB1). LMP2A cooperated with MYC and mutant cyclin D3, two oncogenic drivers of Burkitt lymphoma, to promote proliferation and survival of primary human B cells by counteracting MYC-induced apoptosis and by inhibiting RB1 function, thereby promoting cell-cycle progression. Our results indicate that LMP2A is not a pure BCR mimic but rather rewires intracellular signaling in EBV-infected B cells that optimizes cell survival and proliferation, setting the stage for oncogenic transformation.


1995 ◽  
Vol 14 (7) ◽  
pp. 1382-1391 ◽  
Author(s):  
M.J. Allday ◽  
A. Sinclair ◽  
G. Parker ◽  
D.H. Crawford ◽  
P.J. Farrell

2007 ◽  
Vol 88 (8) ◽  
pp. 2129-2136 ◽  
Author(s):  
Liguo Wu ◽  
Lindsey M. Hutt-Fletcher

Glycoprotein gH, together with its chaperone gL and a third glycoprotein gB, is essential for cell–cell fusion and virus–cell fusion mediated by herpesviruses. Epstein–Barr virus (EBV), the prototype human lymphocryptovirus, requires a fourth glycoprotein gp42 to support fusion with B cells in addition to epithelial cells. Two other lymphocryptoviruses, the rhesus lymphocryptovirus (Rh-LCV) and the common marmoset lymphocryptovirus (CalHV3), have been sequenced in their entirety and each has a gp42 homologue. Combinations of proteins from EBV, Rh-LCV and CalHV3 were able to mediate fusion of epithelial cells, but, even when complexed with EBV gp42, only Rh-LCV and not CalHV3 proteins were able to mediate fusion with human B cells. CalHV3 gL was also unable to function effectively as a chaperone for EBV or Rh-LCV gH. The Rh-LCV gH homologue supported more fusion than EBV gH with an epithelial cell and supported the highest levels of fusion with a B cell. Chimeric constructs made from Rh-LCV gH and EBV gH that have 85.4 % sequence identity should prove useful for mapping the regions of gH that are of importance to fusion as a whole and to B-cell fusion in particular.


2021 ◽  
Vol 17 (4) ◽  
pp. e1009117
Author(s):  
Ezgi Akidil ◽  
Manuel Albanese ◽  
Alexander Buschle ◽  
Adrian Ruhle ◽  
Dagmar Pich ◽  
...  

Gene editing is now routine in all prokaryotic and metazoan cells but has not received much attention in immune cells when the CRISPR-Cas9 technology was introduced in the field of mammalian cell biology less than ten years ago. This versatile technology has been successfully adapted for gene modifications in human myeloid cells and T cells, among others, but applications to human primary B cells have been scarce and limited to activated B cells. This limitation has precluded conclusive studies into cell activation, differentiation or cell cycle control in this cell type. We report on highly efficient, simple and rapid genome engineering in primary resting human B cells using nucleofection of Cas9 ribonucleoprotein complexes, followed by EBV infection or culture on CD40 ligand feeder cells to drive in vitro B cell survival. We provide proof-of-principle of gene editing in quiescent human B cells using two model genes: CD46 and CDKN2A. The latter encodes the cell cycle regulator p16INK4a which is an important target of Epstein-Barr virus (EBV). Infection of B cells carrying a knockout of CDKN2A with wildtype and EBNA3 oncoprotein mutant strains of EBV allowed us to conclude that EBNA3C controls CDKN2A, the only barrier to B cell proliferation in EBV infected cells. Together, this approach enables efficient targeting of specific gene loci in quiescent human B cells supporting basic research as well as immunotherapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document