723: Chemokine Receptor CXCR4 Mediates Migration and Invasion of Bladder Cancer Cells

2004 ◽  
Vol 171 (4S) ◽  
pp. 192-192 ◽  
Author(s):  
Margitta Retz ◽  
Sukhvinder S. Sidhu ◽  
Gregory M. Dolganov ◽  
Jan Lehmann ◽  
Peter R. Carroll ◽  
...  
2019 ◽  
Vol 14 (1) ◽  
pp. 440-447
Author(s):  
Chunhui Dong ◽  
Yihui Liu ◽  
Guiping Yu ◽  
Xu Li ◽  
Ling Chen

AbstractLBHD1 (C11ORF48) is one of the ten potential tumor antigens identified by immunoscreening the urinary bladder cancer cDNA library in our previous study. We suspect that its expression is associated with human bladder cancer. However, the exact correlation remains unclear. To address the potential functional relationship between LBHD1 and bladder cancer, we examined the LBHD1 expression at the mRNA and protein level in 5 different bladder cancer cell lines: J82, T24, 253J, 5637, and BLZ-211. LBHD1 high and low expressing cells were used to investigate the migration, invasion, and proliferation of bladder cancer cells following transfection of LBHD1 with siRNA and plasmids, respectively. Our experiment showed that the degree of gene expression was positively related to the migration and invasion of the cancer cells while it had little effect on cell proliferation. Knocking down LBHD1 expression with LBHD1 siRNA significantly attenuated cell migration and invasion in cultured bladder cancer cells, and overexpressing LBHD1 with LBHD1 cDNA plasmids exacerbated cell migration and invasion. Nevertheless, a difference in cell proliferation after transfection of LBHD1 siRNA and LBHD1 cDNA plasmids was not found. Our findings suggest that LBHD1 might play a role in cell migration and invasion.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Kun Pang ◽  
Zhiguo Zhang ◽  
Lin Hao ◽  
Zhenduo Shi ◽  
Bo Chen ◽  
...  

2019 ◽  
Vol 10 (6) ◽  
pp. 1511-1519 ◽  
Author(s):  
Wenwei Chen ◽  
Tao Jiang ◽  
Houping Mao ◽  
Rui Gao ◽  
Xingjian Gao ◽  
...  

Author(s):  
Xue‑Feng Zhang ◽  
Xue‑Qi Zhang ◽  
Zhe‑Xing Chang ◽  
Cui‑Cui Wu ◽  
Hang Guo

2013 ◽  
Vol 36 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Xin Xu ◽  
Hong Chen ◽  
Yiwei Lin ◽  
Zhenghui Hu ◽  
Yeqing Mao ◽  
...  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e17028-e17028 ◽  
Author(s):  
Yuan-Ru Chen ◽  
Hsin-Chih Yeh ◽  
Fang-Yen Chiu ◽  
Hsin-En Wu ◽  
Huei-Chen Fang ◽  
...  

e17028 Background: Bladder cancer is one of the most common malignancies of urinary system with the forth incidence rate and the eighth leading mortality rate in male genitourinary tumors. Hypoxia environment activates the hypoxia‐signalling pathway, principally via hypoxia‐inducible transcription factors (HIF) to activate numerous target genes which mediate embryonic vascularization, metabolism, tumor angiogenesis and the other processes to supply tissues with blood and oxygen. Inflammasomes are multiprotein signal responsible for the maturation of proinflammatory cytokines IL-1β and IL-18 as well as trigger the inflammatory cell pyroptosis. Recent study showed that HIF-1α promotes NLRP3 inflammasome activation in bleomycin-induced acute lung injury. However, the role of HIF1α in regulating the progression of bladder cancer has not been examined so far. The present study aimed to investigate the effect of HIF-1α on NLRP3 inflammasome activation in urothelial carcinoma. Methods: In this research, urothelial carcinoma cell lines were treated with NLRP3 inflammasome inducers, LPS/ATP, to induce NLRP3 inflammasome activation. Results: Our preliminary results showed that both T24 and 5637 bladder cancer cells can be induced NLRP3 inflammasome activation and IL-1β secretion. In addition, hypoxia also induces the secretion of IL-1β in T24 cells. We further investigated the effect of NLRP3 inflammasome activation in modulating EMT-related protein levels, migration and invasion in bladder cancer T24 cells. Our results demonstrated that NLRP3 inflammasome activation promotes tumor growth and metastasis in bladder cancer cells. Furthermore, knockdown of HIF1α reduces both inflammatory response and migratory activity in bladder cancer. Conclusions: Collectively, these results suggest that targeting NLRP3 inflammasome might offer potential to treat hypoxic malignant tumor in bladder carcinoma.


Sign in / Sign up

Export Citation Format

Share Document