Fabrication structure and physical properties of non-equilibrium metal particles

1998 ◽  
Vol 53 (1) ◽  
pp. 35 ◽  
2019 ◽  
Vol 66 ◽  
pp. 42-60 ◽  
Author(s):  
M. Hantke ◽  
S. Müller

A class of non-equilibrium models for compressible multi-component uids is investigated. These models are subject to the choice of interfacial pressures and interfacial velocity as well as relaxation terms for velocity, pressure and chemical potentials. Sufficient conditions are derived for these quantities that ensure meaningful physical properties such as a non-negative entropy production and thermodynamical stability as well as mathematical properties such as hyperbolicity. For the relaxation of chemical potentials a three-component model gas-water-vapor is considered.


1993 ◽  
Vol 8 (12) ◽  
pp. 3233-3250 ◽  
Author(s):  
N.M. Rodriguez

Carbon nanofibers (sometimes known as carbon filaments) can be produced in a relative large scale by the catalytic decomposition of certain hydrocarbons on small metal particles. The diameter of the nanofibers is governed by that of the catalyst particles responsible for their growth. By careful manipulation of various parameters it is possible to generate carbon nanofibers in assorted conformations and at the same time also control the degree of their crystalline order. This paper is a review of the recent advances made in the development of these nanostructures, with emphasis both on the fundamental aspects surrounding the growth of the material and a discussion of the key factors which enable one to control their chemical and physical properties. Attention is also given to some of the possible applications of the nanostructures which center around the unique blend of properties exhibited by the material.


1973 ◽  
Vol 52 (3) ◽  
pp. 522-532 ◽  
Author(s):  
R.L. Bowen ◽  
H.H. Chandler

Certain physical properties of metal-filled resin composite materials can be improved if properly selected and applied coupling agents are used in treating the surfaces of the metal particles.


Author(s):  
Yu Shi ◽  
Daoyong Yang

A novel and pragmatic technique has been proposed to quantify the non-equilibrium phase behaviour together with physical properties of foamy oil under reservoir conditions. Experimentally, constant-composition expansion (CCE) experiments at various constant pressure decline rates are conducted to examine the non-equilibrium phase behaviour of solvent-CO2-heavy oil systems. Theoretically, the amount of evolved gas is firstly formulated as a function of time, and then incorporated into the real gas equation to quantify the non-equilibrium phase behaviour of the aforementioned systems. Meanwhile, theoretical models have been developed to determine the time-dependent compressibility and density of foamy oil. Good agreements between the experimentally measured volume-pressure profiles and calculated ones have been achieved, while both amounts of evolved gas and entrained gas as well as compressibility and density of foamy oil were determined. The time-dependent effects of entrained gas on physical properties of oleic phase were quantitatively analyzed and evaluated. A larger pressure decline rate and a lower temperature are found to result in a lower pseudo-bubblepoint pressure and a higher expansion rate of the evolved gas volume in the solvent-CO2-heavy oil systems. Apparent critical supersaturation pressure increases with either an increase in pressure decline rate or a decrease in system temperature. Physical properties of the oleic phase under non-equilibrium conditions follow the same trends as those of conventionally undersaturated oil under equilibrium conditions when pressure is higher than the pseudo-bubblepoint pressure. However, there is an abrupt increase of compressibility and decrease of density associated with pseudo-bubblepoint pressure instead of bubblepoint pressure due to the initialization of gas bubble growth. The amount of dispersed gas in the oleic phase is found to impose a dominant impact on physical properties of the foamy oil. Compared with CCE experiment at constant volume expansion rate, a rebound pressure and its corresponding effects on physical properties cannot be observed in the CCE experiments at constant pressure decline rate.


1976 ◽  
Vol 32 ◽  
pp. 365-377 ◽  
Author(s):  
B. Hauck
Keyword(s):  

The Ap stars are numerous - the photometric systems tool It would be very tedious to review in detail all that which is in the literature concerning the photometry of the Ap stars. In my opinion it is necessary to examine the problem of the photometric properties of the Ap stars by considering first of all the possibility of deriving some physical properties for the Ap stars, or of detecting new ones. My talk today is prepared in this spirit. The classification by means of photoelectric photometric systems is at the present time very well established for many systems, such as UBV, uvbyβ, Vilnius, Geneva and DDO systems. Details and methods of classification can be found in Golay (1974) or in the proceedings of the Albany Colloquium edited by Philip and Hayes (1975).


Sign in / Sign up

Export Citation Format

Share Document