Analysis of MTH1 gene function in mice with targeted mutagenesis

Author(s):  
Teruhisa Tsuzuki ◽  
Akinori Egashira ◽  
Shinobu Kura
2015 ◽  
Author(s):  
Nagaveni Budhagatapalli ◽  
Twan Rutten ◽  
Maia Gurushidze ◽  
Jochen Kumlehn ◽  
Goetz Hensel

Transcription activator-like effector nucleases (TALENs) open up new opportunities for targeted mutagenesis in eukaryotic genomes. Similar to zinc-finger nucleases, sequence-specific DNA-binding domains can be fused with effector domains like the nucleolytically active part of FokI in order to induce double strand breaks (DSBs) and thereby modify the host genome on a predefined target site via non-homologous end joining. More sophisticated applications of programmable endonucleases involve the use of a DNA repair template facilitating homology-directed repair (HDR) so as to create predefined rather than random DNA sequence modifications. The aim of this study was to demonstrate the feasibility of editing the barley genome by precisely modifying a defined target DNA sequence resulting in a predicted alteration of gene function. We usedgfp-specific TALENs along with a repair template that, via HDR, facilitates conversion ofgfpintoyfpwhich is associated with a single amino acid exchange in the gene product. As a result of co-bombardment of leaf epidermis, we detected YFP accumulation in about 3 out of 100 mutated cells. The creation of a functionalyfpgene via HDR was unambiguously confirmed by sequencing of the respective genomic site. Predictable genetic modifications comprising only a few genomic base pairs rather than entire genes are of particular practical relevance, because they might not fall under the European regulation of genetically engineered organisms. In addition to the allele conversion accomplished in planta, a readily screenable marker system is introduced that might be useful for optimization approaches in the field of genome editing.


2019 ◽  
Author(s):  
Ashley M. Rasys ◽  
Sungdae Park ◽  
Rebecca E. Ball ◽  
Aaron J. Alcala ◽  
James D. Lauderdale ◽  
...  

AbstractCRISPR-Cas9 mediated gene editing has enabled the direct manipulation of gene function in many species. However, the reproductive biology of reptiles presents unique barriers for the use of this technology, and there are currently no reptiles with effective methods for targeted mutagenesis. Here we present a new approach that enables the efficient production of CRISPR-Cas9 induced mutations in Anolis lizards, an important model for studies of reptile evolution and development.


2020 ◽  
Author(s):  
Sean A. Newmister ◽  
Kinshuk Raj Srivastava ◽  
Rosa V. Espinoza ◽  
Kersti Caddell Haatveit ◽  
Yogan Khatri ◽  
...  

Biocatalysis offers an expanding and powerful strategy to construct and diversify complex molecules by C-H bond functionalization. Due to their high selectivity, enzymes have become an essential tool for C-H bond functionalization and offer complementary reactivity to small-molecule catalysts. Hemoproteins, particularly cytochromes P450, have proven effective for selective oxidation of unactivated C-H bonds. Previously, we reported the in vitro characterization of an oxidative tailoring cascade in which TamI, a multifunctional P450 functions co-dependently with the TamL flavoprotein to catalyze regio- and stereoselective hydroxylations and epoxidation to yield tirandamycin A and tirandamycin B. TamI follows a defined order including 1) C10 hydroxylation, 2) C11/C12 epoxidation, and 3) C18 hydroxylation. Here we present a structural, biochemical, and computational investigation of TamI to understand the molecular basis of its substrate binding, diverse reactivity, and specific reaction sequence. The crystal structure of TamI in complex with tirandamycin C together with molecular dynamics simulations and targeted mutagenesis suggest that hydrophobic interactions with the polyene chain of its natural substrate are critical for molecular recognition. QM/MM calculations and molecular dynamics simulations of TamI with variant substrates provided detailed information on the molecular basis of sequential reactivity, and pattern of regio- and stereo-selectivity in catalyzing the three-step oxidative cascade.<br>


Sign in / Sign up

Export Citation Format

Share Document