Blockade of excitatory amino acid transporters in the rat hippocampus results in enhanced activation of group I and group III metabotropic glutamate receptors

2003 ◽  
Vol 45 (7) ◽  
pp. 885-894 ◽  
Author(s):  
J Selkirk
1999 ◽  
Vol 82 (4) ◽  
pp. 1974-1981 ◽  
Author(s):  
Ezia Guatteo ◽  
Nicola B. Mercuri ◽  
Giorgio Bernardi ◽  
Thomas Knöpfel

Metabotropic glutamate receptors modulate neuronal excitability via a multitude of mechanisms, and they have been implicated in the pathogenesis of neurodegenerative processes. Here we investigated the responses mediated by group I metabotropic glutamate receptors (mGluRs) in dopamine neurons of the rat substantia nigra pars compacta, using whole cell patch-clamp recordings in combination with microfluorometric measurements of [Ca2+]i and [Na+]i. The selective group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (3,5-DHPG) was bath-applied (20 μM, 30 s to 2 min) or applied locally by means of short-lasting (2–4 s) pressure pulses, delivered through an agonist-containing pipette positioned close to the cell body of the neuron. 3,5-DHPG evoked an inward current characterized by a transient and a sustained component, the latter of which was uncovered only with long-lasting agonist applications. The fast component coincided with a transient elevation of [Ca2+]i, whereas the total current was associated with a rise in [Na+]i. These responses were not affected either by the superfusion of ionotropic excitatory amino acid antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and d-2-amino-5-phosphono-pentanoic acid (d-APV), nor by the sodium channel blocker tetrodotoxin (TTX). (S)-α-methyl-4-carboxyphenylglycine (S-MCPG) and the more selective mGluR1 antagonist 7(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate (CPCCOEt) depressed both 3,5-DHPG–induced inward current components and, although less effectively, the associated [Ca2+]i elevations. On repeated agonist applications the inward current and the calcium transients both desensitized. The time constant of recovery from desensitization differed significantly between these two responses, being 67.4 ± 4.4 s for the inward current and 28.6 ± 2.7 s for the calcium response. Bathing the tissue in a calcium-free/EGTA medium or adding thapsigargin (1 μM) to the extracellular medium prevented the generation of the [Ca2+]i transient, but did not prevent the activation of the inward current. These electrophysiological and fluorometric results show that the 3,5-DHPG–induced inward current and the [Ca2+]i elevations are mediated by independent pathways downstream the activation of mGluR1.


2000 ◽  
Vol 84 (6) ◽  
pp. 2998-3009 ◽  
Author(s):  
Volker Neugebauer ◽  
Ping-Sun Chen ◽  
William D. Willis

The heterogeneous family of G-protein-coupled metabotropic glutamate receptors (mGluRs) provides excitatory and inhibitory controls of synaptic transmission and neuronal excitability in the nervous system. Eight mGluR subtypes have been cloned and are classified in three subgroups. Group I mGluRs can stimulate phosphoinositide hydrolysis and activate protein kinase C whereas group II (mGluR2 and 3) and group III (mGluR4, 6, 7, and 8) mGluRs share the ability to inhibit cAMP formation. The present study examined the roles of groups II and III mGluRs in the processing of brief nociceptive information and capsaicin-induced central sensitization of primate spinothalamic tract (STT) cells in vivo. In 11 anesthetized male monkeys ( Macaca fascicularis), extracellular recordings were made from 21 STT cells in the lumbar dorsal horn. Responses to brief (15 s) cutaneous stimuli of innocuous (brush), marginally and distinctly noxious (press and pinch, respectively) intensity were recorded before, during, and after the infusion of group II and group III mGluR agonists into the dorsal horn by microdialysis. Different concentrations were applied for at least 20 min each (at 5 μl/min) to obtain cumulative concentration-response relationships. Values in this paper refer to the drug concentrations in the microdialysis fibers; actual concentrations in the tissue are about three orders of magnitude lower. The agonists were also applied at 10–25 min after intradermal capsaicin injection. The group II agonists (2S,1′S,2′S)-2-(carboxycyclopropyl)glycine (LCCG1, 1 μM-10 mM, n = 6) and (−)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268; 1 μM-10 mM, n = 6) had no significant effects on the responses to brief cutaneous mechanical stimuli (brush, press, pinch) or on ongoing background activity. In contrast, the group III agonist L(+)-2-amino-4-phosphonobutyric acid (LAP4, 0.1 μM-10 mM, n = 6) inhibited the responses to cutaneous mechanical stimuli in a concentration-dependent manner, having a stronger effect on brush responses than on responses to press and pinch. LAP4 did not change background discharges significantly. Intradermal injections of capsaicin increased ongoing background activity and sensitized the STT cells to cutaneous mechanical stimuli (ongoing activity > brush > press > pinch). When given as posttreatment, the group II agonists LCCG1 (100 μM, n = 5) and LY379268 (100 μM, n = 6) and the group III agonist LAP4 (100 μM, n = 6) reversed the capsaicin-induced sensitization. After washout of the agonists, the central sensitization resumed. Our data suggest that, while activation of both group II and group III mGluRs can reverse capsaicin-induced central sensitization, it is the actions of group II mGluRs in particular that undergo significant functional changes during central sensitization because they modulate responses of sensitized STT cells but have no effect under control conditions.


2013 ◽  
Vol 74 ◽  
pp. 135-146 ◽  
Author(s):  
David Lodge ◽  
Patrick Tidball ◽  
Marion S. Mercier ◽  
Sarah J. Lucas ◽  
Lydia Hanna ◽  
...  

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Francine Acher ◽  
Giuseppe Battaglia ◽  
Hans Bräuner-Osborne ◽  
P. Jeffrey Conn ◽  
Robert Duvoisin ◽  
...  

Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [334]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [190, 262, 255, 386]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organization similar to that of other GPCRs, although the helices appear more compacted [85, 415, 59]. mGlu form constitutive dimers crosslinked by a disulfide bridge. Recent studies revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [86]. Although well characterized in transfected cells, co-localization and specific pharmacological properties also suggest the existence of such heterodimers in the brain [422, 257]. The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [29] and antagonized by (S)-hexylhomoibotenic acid [223]. Group-II mGlu receptors may be activated by LY389795 [256], LY379268 [256], eglumegad [337, 416], DCG-IV and (2R,3R)-APDC [338], and antagonised by eGlu [161] and LY307452 [408, 100]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [125]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [176]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as ‘potentiators’ of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist.


1997 ◽  
Vol 78 (3) ◽  
pp. 1468-1475 ◽  
Author(s):  
N. E. Schoppa ◽  
G. L. Westbrook

Schoppa, N. E. and G. L. Westbrook. Modulation of mEPSCs in olfactory bulb mitral cells by metabotropic glutamate receptors. J. Neurophysiol. 78: 1468–1475, 1997. Olfactory bulb mitral cells express group I (mGluR1), group II (mGluR2), and group III (mGluR7 and mGluR8) metabotropic glutamate receptors. We examined the role of these mGluRs on excitatory synaptic transmission in cultured mitral cells with the use of whole cell patch-clamp recordings. The effects of group-selective mGluR agonists and antagonists were tested on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-receptor-mediated miniature excitatory postsynaptic currents (mEPSCs). (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylate (ACPD) or the group-I-selective agonist 3,5-dihydroxyphenylglycine evoked an inward current accompanied by a decrease in membrane conductance, consistent with the previously described closure of potassium channels by group I agonists. The increased cellular excitability was accompanied by an increase in mEPSC frequency in some cells. When calcium entry was blocked by cadmium, ACPD or the group-II-selective agonist 2-(2,3-dicarboxycyclopropyl)-glycine reduced the mEPSC frequency. l-2-amino-4-phosphonobutyric acid (l-AP4), a group-III-selective agonist, caused a similar decrease. The concentration-dependence ofl-AP4-mediated inhibition was most consistent with activation of mGluR8. We investigated two possible effector mechanisms for the group III presynaptic receptor. Bath application of forskolin or 3-isobutyl-1-methylxantine had no effect on mEPSC frequency. Increasing calcium influx by raising extracellular K+ caused a large increase in the mEPSC frequency but did not enhance l-AP4-mediated inhibition. Thus inhibition of mEPSCs involves a mechanism downstream of calcium entry and appears to be independent of adenosine 3′,5′-cyclic monophosphate. Our results indicate that both group II and III receptors can inhibit glutamate release at mitral cell terminals. Although group II/III receptors had a similar effect on mEPSCs, differences in location on nerve terminals and in glutamate sensitivity suggest that each mGluR may have discrete actions on mitral cell activity.


2000 ◽  
Vol 83 (3) ◽  
pp. 1141-1149 ◽  
Author(s):  
G. R. Dubé ◽  
K. C. Marshall

Synaptic activation of metabotropic glutamate receptors (mGluRs) in the locus coeruleus (LC) was investigated in adult rat brain slice preparations. Evoked excitatory postsynaptic potentials (EPSPs) resulting from stimulation of LC afferents were measured with current clamp from intracellularly recorded LC neurons. In this preparation, mGluR agonists (±)-1-aminocyclopentane- trans-1,3-dicarboxylic acid ( t-ACPD) and L(+)-2-amino-4-phosphonobutyric acid (L-AP4) activate distinct presynaptic mGluRs, resulting in an inhibition of EPSPs. When two stimuli were applied to afferents at intervals >200 ms, the amplitude of the second [test (T)] EPSP was identical in amplitude to the first [control(C)]. However, when a stimulation volley was delivered before T, the amplitude of the latter EPSP was consistently smaller than C. The activity-dependent depression (ADD) was dependent on the frequency and duration of the train and the interval between the train and T. ADD was potentiated in the presence of an excitatory amino acid (EAA) uptake inhibitorL- trans-pyrrolidine-2,4-dicarboxylic acid ( t-PDC, 100 μM), changing the T/C ratio from 0.84 ± 0.05 (mean ± SE) in control to 0.69 ± 0.04 in t-PDC ( n = 9). In the presence of t-PDC, the depolarizing response of LC neurons to focally applied glutamate was also increased. Together, these results suggest that accumulation of EAA after synaptic stimulation may be responsible for ADD. To test if ADD is a result of the activation of presynaptic mGluRs, the effect of selective mGluR antagonists on ADD was assessed. In the presence of t-PDC, bath applied (S)-amino-2-methyl-4-phosphonobutanoic acid (MAP4, 500 μM), a mGluR group III antagonist, significantly reversed the decrease in T/C ratio after a train stimulation [from 0.66 ± 0.04 to 0.81 ± 0.02 (mean ± SE), n = 5]. The T/C ratio in the presence of MAP4 was not different from that measured in the absence of a stimulation volley. Conversely, ethyl glutamic acid (EGLU, 500 μM), a mGluR group II antagonist, failed to alter the T/C ratio. Together, these results suggest that, in LC, group III presynaptic mGluR activation provides a feedback mechanism by which excitatory synaptic transmission can be negatively modulated during high-frequency synaptic activity. Furthermore, this study provides functional differentiation between presynaptic groups II and III mGluR in LC and suggests that the group II mGluR may be involved in functions distinct from those of group III mGluRs.


Sign in / Sign up

Export Citation Format

Share Document