Feasibility study on the applicability of a diffusion-welded compact intermediate heat exchanger to next-generation high temperature gas-cooled reactor

1997 ◽  
Vol 168 (1-3) ◽  
pp. 11-21 ◽  
Author(s):  
Takeshi Takeda ◽  
Kazuhiko Kunitomi ◽  
Tetsuji Horie ◽  
Katsuo Iwata
Author(s):  
Nariaki Sakaba ◽  
Shimpei Hamamoto ◽  
Yoichi Takeda

Lifetime extension of high-temperature equipment such as the intermediate heat exchanger of high-temperature gas-cooled reactors (HTGRs) is important from the economical point of view. Since the replacing cost will cause the increasing of the running cost, it is important to reduce replacing times of the high-cost primary equipment during assumed reactor lifetime. In the past, helium chemistry has been controlled by the passive chemistry control technology in which chemical impurity in the coolant helium is removed as low concentration as possible, as does Japan’s HTTR. Although the lifetime of high-temperature equipment almost depends upon the chemistry conditions in the coolant helium, it is necessary to establish an active chemistry control technology to maintain adequate chemical conditions. In this study, carbon deposition which could occur at the surface of the heat transfer tubes of the intermediate heat exchanger and decarburization of the high-temperature material of Hastelloy XR used at the heat transfer tubes were evaluated by referring the actual chemistry data obtained by the HTTR. The chemical equilibrium study contributed to clarify the algorism of the chemistry behaviours to be controlled. The created algorism is planned to be added to the instrumentation system of the helium purification systems. In addition, the chemical composition to be maintained during the reactor operation was proposed by evaluating not only core graphite oxidation but also carbon deposition and decarburization. It was identified when the chemical composition could not keep adequately, injection of 10 ppm carbon monoxide could effectively control the chemical composition to the designated stable area where the high-temperature materials could keep their structural integrity beyond the assumed duration. The proposed active chemistry control technology is expected to contribute economically to the purification systems of the future very high-temperature reactors.


2010 ◽  
Vol 9 (2) ◽  
pp. 219-232 ◽  
Author(s):  
Yorikata MIZOKAMI ◽  
Toshihide IGARI ◽  
Keiichi NAKASHIMA ◽  
Fumiko KAWASHIMA ◽  
Noriyuki SAKAKIBARA ◽  
...  

2008 ◽  
Vol 595-598 ◽  
pp. 501-509
Author(s):  
Damien Kaczorowski ◽  
Gouenou Girardin ◽  
S. Chamousset

Nickel base alloys 617 and 230 are promising candidates for the Intermediate Heat eXchanger (IHX) of GenIV Very High Temperature gas cooled Reactors. The capability to maintain an oxide layer as an efficient barrier against corrosion under mechanical loading is investigated through SEM in situ tensile test. The mechanical properties of external oxide layers are so compared between the two alloys. Cracks and spallation are observed. Few differences could be observed between these two alloys when pre oxidized in impure helium.


Author(s):  
Robert W. Swindeman ◽  
Michael J. Swindeman ◽  
Weiju Ren

Alloy 617 is being considered for the construction of components to operate in the Next Generation Nuclear Plant (NGNP). Service temperatures will range from 650 to 1000°C. To meet the needs of the conceptual designers of this plant, a materials handbook is being developed that will provide information on alloy 617, as well as other materials of interest. The database for alloy 617 to be incorporated into the handbook was produced in the 1970s and 1980s, while creep and damage models were developed from the database for use in the design of high-temperature gas-cooled reactors. In the work reported here, the US database and creep models are briefly reviewed. The work reported represents progress toward a useful model of the behavior of this material in the temperature range of 650 to 1000°C.


Sign in / Sign up

Export Citation Format

Share Document