A 300 000-yr coral reef record of sea level changes, Mururoa atoll (Tuamotu archipelago, French Polynesia)

2001 ◽  
Vol 175 (1-4) ◽  
pp. 325-341 ◽  
Author(s):  
G.F Camoin ◽  
Ph Ebren ◽  
A Eisenhauer ◽  
E Bard ◽  
G Faure
2021 ◽  
Author(s):  
Kathrine Maxwell ◽  
Hildegard Westphal ◽  
Alessio Rovere

<p>The Last Interglacial (LIG), as well as other warmer periods in the Earth’s geologic history, provides an analogue for predicted warming conditions in the near future. Analysis of sea-level indicators during this period is important in constraining regional drivers of relative sea-level change (RSL) and in modeling future trajectories of sea-level rise. In southeast Asia, several studies have been done to examine LIG sea-level indicators such as coral reef terraces and tidal notches. A synthesis of the state-of-the-art of the LIG RSL indicators in the region, meanwhile, has yet to be done. We reviewed over 50 published works on the LIG RSL indicators in southeast Asia and used the framework of the World Atlas of Last Interglacial Shorelines (WALIS) in building a standardized database of previously published LIG RSL indicators in the region. In total, we identified 38 unique RSL indicators and inserted almost 140 ages in the database. Available data from Indonesia, the Philippines, and East Timor points to variable elevation of sea-level indicators during the LIG highlighting the complex tectonic setting of this region. Variable uplift rates (from as low as 0.02 to as high as 1.1 m/ka) were reported in the study areas echoing various collision and subduction processes influencing these sites. Although several age constraints and elevation measurements have been provided by these studies, more data is still needed to shed more light on the RSL changes in the region. With this effort under the WALIS framework, we hope to identify gaps in the LIG RSL indicators literature in SE Asia and recognize potential areas that can be visited for future work. We also hope that this initiative will help us further understand the different drivers of past sea-level changes in SE Asia and will provide inputs for projections of sea-level change in the future.</p>


2020 ◽  
Vol 51 (1) ◽  
pp. 131-145 ◽  
Author(s):  
P. Maurizot ◽  
J. Collot ◽  
D. Cluzel ◽  
M. Patriat

AbstractThe Loyalty Ridge lies to the east and NE of the Norfolk Ridge. The three main Loyalty Islands (Maré, Lifou and Ouvéa) emerge from the ridge at the same latitude as Grande Terre. The islands are uniformly composed of carbonate deposits, except for Maré, where Middle Miocene intra-plate basalts and associated volcaniclastic rocks form restricted outcrops. Miocene rhodolith limestones constitute the bulk of the carbonate cover of the three islands. On Maré, these platform accumulations are locally topped by a dolomitic hardground, which, in turn, is covered by Pliocene–Pleistocene coral-bearing formations. These coral reef constructions are preserved as elevated rims over all three islands and define an atoll stage in their development. The Pleistocene–Holocene palaeoshoreline indicators include fringing bioconstructions and marine notches and record both eustatic sea-level changes and tectonic deformation. The ridge has been in the forebulge region in front of the active Vanuatu subduction zone since the Pliocene and each of the three islands has been uplifted and tilted to varying degrees. Offshore, the Loyalty Ridge continues northwards to the d'Entrecasteaux Zone and southwards to the Three Kings Ridge. Although typically volcanic, the nature of the deep Loyalty Ridge remains unknown.


2012 ◽  
Vol 65 (10-12) ◽  
pp. 506-515 ◽  
Author(s):  
Marc Bouvy ◽  
Marine Combe ◽  
Yvan Bettarel ◽  
Christine Dupuy ◽  
Emma Rochelle-Newall ◽  
...  

2016 ◽  
Vol 12 (6) ◽  
pp. 20160090 ◽  
Author(s):  
Sean M. Evans ◽  
Caroline McKenna ◽  
Stephen D. Simpson ◽  
Jennifer Tournois ◽  
Martin J. Genner

The Coral Triangle in the Indo-Pacific is a region renowned for exceptional marine biodiversity. The area could have acted as a ‘centre of origin’ where speciation has been prolific or a ‘centre of survival’ by providing refuge during major environmental shifts such as sea-level changes. The region could also have acted as a ‘centre of accumulation’ for species with origins outside of the Coral Triangle, owing to it being at a central position between the Indian and Pacific oceans. Here, we investigated support for these hypotheses using population-level DNA sequence-based reconstructions of the range evolution of 45 species (314 populations) of Indo-Pacific reef-associated organisms. Our results show that populations undergoing the most ancient establishment were significantly more likely to be closer to the centre of the Coral Triangle than to peripheral locations. The data are consistent with the Coral Triangle being a net source of coral-reef biodiversity for the Indo-Pacific region, suggesting that the region has acted primarily as a centre of survival, a centre of origin or both. These results provide evidence of how a key location can influence the large-scale distributions of biodiversity over evolutionary timescales.


2004 ◽  
Vol 120 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Keiichi Sasaki ◽  
Akio Omura ◽  
Kazuo Murakami ◽  
Natsume Sagawa ◽  
Toru Nakamori

1986 ◽  
Vol 25 (3) ◽  
pp. 350-368 ◽  
Author(s):  
Paolo Antonio Pirazzoli ◽  
Lucien François Montaggioni

Field surveys of several sea-level indicators (exposed in situ reef framework, conglomerates, coral colonies and Tridacna shells in a growth position, sea-corrosion notches) carried out on six atolls from the NW Tuamotus (Mataiva, Rangiroa, Arutua, Kaukura, Apataki and Takapoto) and data from four subsurface boreholes drilled through Mataiva show that during the late Holocene mean sea level (MSL) reached a maximum elevation at approximately + 0.9 m. It remained above the present MSL from between 6000 and 5500 yr B.P. until at least 1200 yr B.P. Human settlements on the atolls were extremely unlikely and probably impossible throughout this time. The area investigated seems to have been tectonically quite stable during the late Holocene. A local curve of MSL variations may be representative of the regional eustatic pattern.


Sign in / Sign up

Export Citation Format

Share Document