Crossover effects and molecular mass regions in solutions of worm-like polymers: a new relation for the determination of their statistical segment length, based on the blob model

Polymer ◽  
2000 ◽  
Vol 41 (12) ◽  
pp. 4607-4616 ◽  
Author(s):  
A. Dondos
Polymer ◽  
1998 ◽  
Vol 39 (17) ◽  
pp. 4155-4158 ◽  
Author(s):  
C. Gans ◽  
J. Schnee ◽  
U. Scherf ◽  
G. Staikos ◽  
E. Pierri ◽  
...  

2018 ◽  
pp. 138-146 ◽  
Author(s):  
Karin Abraham ◽  
Eckhard Flöter

The presence of polysaccharides in cane and beet raw juices causes several negative effects during the sugar manufacture. These are usually mitigated by enzymatic decomposition of dextrans. Such effects not only depend on the content, but also on the molecular mass distribution. This means that the different dextran fractions specifically affect the process. An accurate process control hence requires the most precise knowledge about the existing content and the molecular mass distribution present. A detailed understanding of the specific processing problems and also a targeted enzyme application hence requires the determination of a total dextran content and also its characterization including the differentiation between the different dextran fractions. An accurate analytical tool which equally satisfies industrial applicability is still lacking. To improve on this situation, two new approaches for the determination of dextran were developed and benchmarked against the commonly used and established Haze Method, which is rather inaccurate and also sensitive to molecular mass variation. The two new approaches are both based on polarimetry. These two methods indicate to be superior over the Haze Method with respect two molecular mass variation and hence enable the determination of a broader molecular size range including also low molecular mass dextrans.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1387-1395 ◽  
Author(s):  
Sudhir Kumar ◽  
Sudhindra R Gadagkar ◽  
Alan Filipski ◽  
Xun Gu

AbstractGenomic divergence between species can be quantified in terms of the number of chromosomal rearrangements that have occurred in the respective genomes following their divergence from a common ancestor. These rearrangements disrupt the structural similarity between genomes, with each rearrangement producing additional, albeit shorter, conserved segments. Here we propose a simple statistical approach on the basis of the distribution of the number of markers in contiguous sets of autosomal markers (CSAMs) to estimate the number of conserved segments. CSAM identification requires information on the relative locations of orthologous markers in one genome and only the chromosome number on which each marker resides in the other genome. We propose a simple mathematical model that can account for the effect of the nonuniformity of the breakpoints and markers on the observed distribution of the number of markers in different conserved segments. Computer simulations show that the number of CSAMs increases linearly with the number of chromosomal rearrangements under a variety of conditions. Using the CSAM approach, the estimate of the number of conserved segments between human and mouse genomes is 529 ± 84, with a mean conserved segment length of 2.8 cM. This length is <40% of that currently accepted for human and mouse genomes. This means that the mouse and human genomes have diverged at a rate of ∼1.15 rearrangements per million years. By contrast, mouse and rat are diverging at a rate of only ∼0.74 rearrangements per million years.


Sign in / Sign up

Export Citation Format

Share Document