genomic divergence
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 71)

H-INDEX

35
(FIVE YEARS 6)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sharon Y. Geerlings ◽  
Janneke P. Ouwerkerk ◽  
Jasper J. Koehorst ◽  
Jarmo Ritari ◽  
Steven Aalvink ◽  
...  

Abstract Background Akkermansia muciniphila is a member of the human gut microbiota where it resides in the mucus layer and uses mucin as the sole carbon, nitrogen and energy source. A. muciniphila is the only representative of the Verrucomicrobia phylum in the human gut. However, A. muciniphila 16S rRNA gene sequences have also been found in the intestines of many vertebrates. Results We detected A. muciniphila-like bacteria in the intestines of animals belonging to 15 out of 16 mammalian orders. In addition, other species belonging to the Verrucomicrobia phylum were detected in fecal samples. We isolated 10 new A. muciniphila strains from the feces of chimpanzee, siamang, mouse, pig, reindeer, horse and elephant. The physiology and genome of these strains were highly similar in comparison to the type strain A. muciniphila MucT. Overall, the genomes of the new strains showed high average nucleotide identity (93.9 to 99.7%). In these genomes, we detected considerable conservation of at least 75 of the 78 mucin degradation genes that were previously detected in the genome of the type strain MucT. Conclusions The low genomic divergence observed in the new strains may indicate that A. muciniphila favors mucosal colonization independent of the differences in hosts. In addition, the conserved mucus degradation capability points towards a similar beneficial role of the new strains in regulating host metabolic health.


2021 ◽  
Author(s):  
Sheela P Turbek ◽  
Georgy A Semenov ◽  
Erik D Enbody ◽  
Leonardo Campagna ◽  
Scott A Taylor

Abstract Recently diverged taxa often exhibit heterogeneous landscapes of genomic differentiation, characterized by regions of elevated differentiation on an otherwise homogeneous background. While divergence peaks are generally interpreted as regions responsible for reproductive isolation, they can also arise due to background selection, selective sweeps unrelated to speciation, and variation in recombination and mutation rates. To investigate the association between patterns of recombination and landscapes of genomic differentiation during the early stages of speciation, we generated fine-scale recombination maps for six southern capuchino seedeaters (Sporophila) and two subspecies of White Wagtail (Motacilla alba), two recent avian radiations in which divergent selection on pigmentation genes has likely generated peaks of differentiation. We compared these recombination maps to those of Collared (Ficedula albicollis) and Pied Flycatchers (Ficedula hypoleuca), non-sister taxa characterized by moderate genomic divergence and a heterogenous landscape of genomic differentiation shaped in part by background selection. Although recombination landscapes were conserved within all three systems, we documented a weaker negative correlation between recombination rate and genomic differentiation in the recent radiations. All divergence peaks between capuchinos, wagtails, and flycatchers were located in regions with lower-than-average recombination rates, and most divergence peaks in capuchinos and flycatchers fell in regions of exceptionally reduced recombination. Thus, co-adapted allelic combinations in these regions may have been protected early in divergence, facilitating rapid diversification. Despite largely conserved recombination landscapes, divergence peaks are specific to each focal comparison in capuchinos, suggesting that regions of elevated differentiation have not been generated by variation in recombination rate alone.


Microbiology ◽  
2021 ◽  
Vol 167 (9) ◽  
Author(s):  
Anastasia Kottara ◽  
Laura Carrilero ◽  
Ellie Harrison ◽  
James P. J. Hall ◽  
Michael A. Brockhurst

By transferring ecologically important traits between species, plasmids drive genomic divergence and evolutionary innovation in their bacterial hosts. Bacterial communities are often diverse and contain multiple coexisting plasmids, but the dynamics of plasmids in multi-species communities are poorly understood. Here, we show, using experimental multi-species communities containing two plasmids, that bacterial diversity limits the horizontal transmission of plasmids due to the ‘dilution effect’; this is an epidemiological phenomenon whereby living alongside less proficient host species reduces the expected infection risk for a focal host species. In addition, plasmid horizontal transmission was also affected by plasmid diversity, such that the rate of plasmid conjugation was reduced from co-infected host cells carrying both plasmids. In diverse microbial communities, plasmid spread may be limited by the dilution effect and plasmid–plasmid interactions, reducing the rate of horizontal transmission.


2021 ◽  
Vol 9 (9) ◽  
pp. 1906
Author(s):  
Romina Díaz ◽  
Alexis Torres-Miranda ◽  
Guillermo Orellana ◽  
Daniel Garrido

Bifidobacterium longum subsp. longum is a prevalent group in the human gut microbiome. Its persistence in the intestinal microbial community suggests a close host-microbe relationship according to age. The subspecies adaptations are related to metabolic capabilities and genomic and functional diversity. In this study, 154 genomes from public databases and four new Chilean isolates were genomically compared through an in silico approach to identify genomic divergence in genes associated with carbohydrate consumption and their possible adaptations to different human intestinal niches. The pangenome of the subspecies was open, which correlates with its remarkable ability to colonize several niches. The new genomes homogenously clustered within subspecies longum, as observed in phylogenetic analysis. B. longum SC664 was different at the sequence level but not in its functions. COG analysis revealed that carbohydrate use is variable among longum subspecies. Glycosyl hydrolases participating in human milk oligosaccharide use were found in certain infant and adult genomes. Predictive genomic analysis revealed that B. longum M12 contained an HMO cluster associated with the use of fucosylated HMOs but only endowed with a GH95, being able to grow in 2-fucosyllactose as the sole carbon source. This study identifies novel genomes with distinct adaptations to HMOs and highlights the plasticity of B. longum subsp. longum to colonize the human gut microbiota.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Toshiyuki Imaizumi ◽  
Kaworu Ebana ◽  
Yoshihiro Kawahara ◽  
Chiaki Muto ◽  
Hiroyuki Kobayashi ◽  
...  

AbstractAgricultural weeds are the most important biotic constraints to global crop production, and chief among these is weedy rice. Despite increasing yield losses from weedy rice in recent years worldwide, the genetic basis of weediness evolution remains unclear. Using whole-genome sequence analyses, we examined the origins and adaptation of Japanese weedy rice. We find evidence for a weed origin from tropical japonica crop ancestry, which has not previously been documented in surveys of weedy rice worldwide. We further show that adaptation occurs largely through different genetic mechanisms between independently-evolved temperate japonica- and tropical japonica-derived strains; most genomic signatures of positive selection are unique within weed types. In addition, some weedy rice strains have evolved through hybridization between weedy and cultivated rice with adaptive introgression from the crop. Surprisingly, introgression from cultivated rice confers not only crop-like adaptive traits (such as shorter plant height, facilitating crop mimicry) but also weedy-like traits (such as seed dormancy). These findings reveal how hybridization with cultivated rice can promote persistence and proliferation of weedy rice.


mBio ◽  
2021 ◽  
Author(s):  
Alexander Lorenz ◽  
Nicolas Papon

2009 saw the first description of Candida auris , a yeast pathogen of humans. C. auris has since grown into a global problem in intensive care settings, where it causes systemic infections in patients with underlying health issues. Recent whole-genome sequencing has discerned five C. auris clades with distinct phenotypic features which display genomic divergence on a DNA sequence and a chromosome structure level.


2021 ◽  
pp. 1-9
Author(s):  
Suyun Liang ◽  
Zhanbao Guo ◽  
Jing Tang ◽  
Zhanqing Ji ◽  
Ming Xie ◽  
...  

2021 ◽  
Author(s):  
R. A. W. Wiberg ◽  
V. Tyukmaeva ◽  
A. Hoikkala ◽  
M. G. Ritchie ◽  
M. Kankare

2021 ◽  
Author(s):  
Anastasia Kottara ◽  
Laura Carrilero ◽  
Ellie Harrison ◽  
James Peter John Hall ◽  
Michael Brockhurst

By transferring ecologically important traits between species, plasmids drive genomic divergence and evolutionary innovation in their bacterial hosts. Bacterial communities are often diverse and contain multiple coexisting plasmids, but the dynamics of plasmids in multispecies communities are poorly understood. Here, we show, using experimental multispecies communities containing two plasmids, that bacterial diversity limits the horizontal transmission of plasmids due to the dilution effect; an epidemiological phenomenon whereby living alongside less proficient host species reduces the expected infection risk for a focal host species. In addition, plasmid horizontal transmission was also affected by plasmid diversity, such that the rate of plasmid conjugation was reduced from coinfected host cells carrying both plasmids. In diverse microbial communities, plasmid spread may be limited by the dilution effect and plasmid-plasmid interactions reducing the rate of horizontal transmission.


Sign in / Sign up

Export Citation Format

Share Document