scholarly journals New insights on the relative sea level changes during the Late Holocene along the coast of Paros Island and the northern Cyclades (Greece)

2020 ◽  
Vol 63 (6) ◽  
Author(s):  
Eleni Kolaiti ◽  
Nikos Mourtzas

Geomorphological and archaeological indicators of former sea levels along the coast of Paros enabled us to determine and date six distinct sea level stands and the relative sea level (rsl) changes between them, as well as plot the rsl curve for the last 6,300 years. The Late Holocene history of the rsl change in Paros began with the sea level at 4.90 ± 0.10 m below mean sea level (bmsl) dated to the Late Neolithic period (4300 BC-3700 BC). The next sea level at 3.50 ± 0.20 m bmsl is dated to the Geometric and Archaic period of the Cyclades (1050 BC-490 BC) and most probably lasted during the Hellenistic period (323-146 BC). The sea level at 2.40 ± 0.25 m bmsl is dated to the Roman period (146-400 AD) and the next sea level at 1.35 ± 0.20 m bmsl to the Venetian period of the Cyclades (1207-1537). The sea level at 0.80 ± 0.10 m bmsl is dated to after the Venetian period, during the Ottoman rule of the island (1537-1821). The youngest sea level stand at 0.45 ± 0.10 m is attributed to the recent change in the sea level after the late 19th c. onward. The separation between glacio-hydro-isostatic signals and the observed rsl change on Paros Island, in an area of seismic quiescence, demonstrates a significant tectonic component in the rsl changes. Moreover, the sea level stands deduced from Paros in comparison with those from the northern Cyclades indicate a uniform tectonic behaviour of the entire northern and central section of the Cyclades plateau.

The Holocene ◽  
2019 ◽  
Vol 29 (9) ◽  
pp. 1491-1502
Author(s):  
Greg T Rushby ◽  
Geoff T Richards ◽  
W Roland Gehrels ◽  
William P Anderson ◽  
Mark D Bateman ◽  
...  

Accurate Holocene relative sea-level curves are vital for modelling future sea-level changes, particularly in regions where relative sea-level changes are dominated by isostatically induced vertical land movements. In North Wales, various glacial isostatic adjustment (GIA) models predict a mid-Holocene relative sea-level highstand between 4 and 6 ka, which is unsubstantiated by any geological sea-level data but affects the ability of geophysical models to model accurately past and future sea levels. Here, we use a newly developed foraminifera-based sea-level transfer function to produce a 3300-year-long late-Holocene relative sea-level reconstruction from a salt marsh in the Malltraeth estuary on the south Anglesey coast in North Wales. This is the longest continuous late-Holocene relative sea-level reconstruction in Northwest Europe. We combine this record with two new late-Holocene sea-level index points (SLIPs) obtained from a freshwater marsh at Rhoscolyn, Anglesey, and with previously published regional SLIPs, to produce a relative sea-level record for North Wales that spans from ca. 13,000 BP to the present. This record leaves no room for a mid-Holocene relative sea-level highstand in the region. We conclude that GIA models that include a mid-Holocene sea-level highstand for North Wales need revision before they are used in the modelling of past and future relative sea-level changes around the British Isles.


2006 ◽  
Vol 66 (2) ◽  
pp. 288-302 ◽  
Author(s):  
W. Roland Gehrels ◽  
Katie Szkornik ◽  
Jesper Bartholdy ◽  
Jason R. Kirby ◽  
Sarah L. Bradley ◽  
...  

AbstractCores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.


2002 ◽  
Vol 97 ◽  
pp. 171-200 ◽  
Author(s):  
Simon Price ◽  
Tom Higham ◽  
Lucia Nixon ◽  
Jennifer Moody

This article is concerned with the recognition and dating of Holocene relative sea-level changes along the coast of west Crete (an island located in the active Hellenic subduction arc of the southern Aegean) and in particular in Sphakia. Radiocarbon data for changes in sea levels collected and analysed previously must (a) be recorrected to take into account isotopic fractionation, and (b) recalibrated by using the new marine reservoir value. These new radiocarbon dates are analysed using Bayesian statistics. The resulting calendar dates for changes in sea level are younger than previously assumed. In particular the Great Uplift in western Crete in late antiquity must be dated to the fifth or sixth century AD, not to AD 365. Moreover, recent work on tectonics suggests that the Great Uplift need not have been accompanied by a catastrophic earthquake. Finally, we consider the consequences of the Great Uplift for some coastal sites in Sphakia.


2003 ◽  
Vol 60 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Antony J. Long ◽  
David H. Roberts ◽  
Morten Rasch

AbstractRelative sea level (RSL) data derived from isolation basins at Innaarsuit, a site on the south shores of the large marine embayment of Disko Bugt, West Greenland, record rapid RSL fall from the marine limit (ca. 108 m) at 10,300–9900 cal yr B.P. to reach the present sea level at 3500 cal yr B.P. Since 2000 cal yr B.P., RSL rose ca. 3 m to the present. When compared with data from elsewhere in Disko Bugt, our results suggest that the embayment was deglaciated later and more quickly than previously thought, at or slightly before 10,300 cal yr B.P. The northern part of Disko Bugt experienced less rebound (ca. 10 m at 6000 cal yr B.P.) compared with areas to the south. Submergence during the late Holocene supports a model of crustal down-warping as a result of renewed ice-sheet growth during the neoglacial. There is little evidence for west to east differences in crustal rebound across the southern shores of Disko Bugt.


2002 ◽  
Vol 93 (4) ◽  
pp. 301-331 ◽  
Author(s):  
D. E. Smith ◽  
J. M. Wells ◽  
T. M. Mighall ◽  
R. A. Cullingford ◽  
L. K. Holloway ◽  
...  

ABSTRACTChanges in Holocene (Flandrian) relative sea levels and coastal geomorphology in the lower Cree valley and estuary, SW Scotland, are inferred from detailed morphological and stratigraphical investigations. A graph of relative sea level changes is proposed for the area. Rising relative sea levels during the early Holocene were interrupted at c. 8300–8600 14C years B.P.(c. 9400–9900 calibrated years B.P.), when an extensive estuarine surface was reached at c. −1 m O.D., after which a fluctuating rise culminated at c. 6100–6500 14C B.P. (c. 7000–7500 calibrated years B.P.) in a prominent shoreline and associated estuarine surface measured at 7·7–10·3 m O.D. A subsequent fall in relative sea level was followed by a rise to a shoreline at 7·8–10·1 m O.D., exceeding or reoccupying the earlier shoreline over much of the area after c. 5000 14C B.P. (c. 5,800 calibrated years B.P.), before relative sea level fell to a later shoreline, reached after c. 2900 14C B.P. (c. 3100 calibrated years B.P.) at 5·5–8·0 m O.D., following which relative sea levels fell, ultimately reaching present levels. During these changes, a particular feature of the coastline was the development of a number of barrier systems. The relative sea level changes identified are compared with changes elsewhere in SW Scotland and their wider context is briefly considered.


2001 ◽  
Vol 28 (2) ◽  
pp. 213 ◽  
Author(s):  
KENITIRO SUGUIO

Meanwhile the highest relative sea-level is the present one in southeastern United States (Gulf of Mexico) or in Netherlands coast, most of the Brazilian coast exhibited Holocene sea-levels higher than the present in the past. The Brazilian curves, representing the relative sea-level changes during last 7.000 years, are outlined using sedimentological, biological and prehistorical past sea-level records. This paper shows that these relative sea-level records, during the Holocene, can be suitably used to demonstrate the influence of the worldwide known paleoclimatic events, like the “Hypsithermal Age” and “Neoglaciation” on the Brazilian coast.


Sign in / Sign up

Export Citation Format

Share Document