melting event
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 2 (1) ◽  
pp. 387-394
Author(s):  
Thomas Kress ◽  
Kateryna Che ◽  
Ludovica M. Epasto ◽  
Fanny Kozak ◽  
Mattia Negroni ◽  
...  

Abstract. We present a system for facilitated sample vitrification, melting, and transfer in dissolution dynamic nuclear polarization (DDNP) experiments. In DDNP, a sample is typically hyperpolarized at cryogenic temperatures before dissolution with hot solvent and transfer to a nuclear magnetic resonance (NMR) spectrometer for detection in the liquid state. The resulting signal enhancements can exceed 4 orders of magnitude. However, the sudden temperature jump from cryogenic temperatures close to 1 K to ambient conditions imposes a particular challenge. It is necessary to rapidly melt the sample to avoid a prohibitively fast decay of hyperpolarization. Here, we demonstrate a sample dissolution method that facilitates the temperature jump by eliminating the need to open the cryostat used to cool the sample. This is achieved by inserting the sample through an airlock in combination with a dedicated dissolution system that is inserted through the same airlock shortly before the melting event. The advantages are threefold: (1) the cryostat can be operated continuously at low temperatures. (2) The melting process is rapid as no pressurization steps of the cryostat are required. (3) Blockages of the dissolution system due to freezing of solvents during melting and transfer are minimized.


2021 ◽  
Author(s):  
Regina Holtmann ◽  
Jesus Muñoz-Montecinos ◽  
Samuel Angiboust ◽  
Aitor Cambeses ◽  
Guillaume Bonnet ◽  
...  

<p>A Cretaceous paleo-accretionary wedge (the Ashin Complex) now exposed along the Zagros suture zone in southern Iran exhibits mafic and metapelitic lithologies. Field, geochemical and petrological observations point to a high-temperature event that gave rise to the formation of peritectic (trondhjemitic) melts associated with restitic garnet-bearing amphibolites in the structurally highest sliver of the Ashin Complex. SHRIMP U-Pb zircon dating of grains crystallized in trondhjemitic leucosomes yields a <sup>206</sup>Pb/<sup>238</sup>U weighted mean age of 104 ±1 Ma, interpreted as the peak temperature event, which occurred in the amphibolite facies (c. 640-650°C at 1.1-1.3 GPa), based on thermodynamic modeling. Rutile crystals from several leucosomes yield Zr-in-rutile temperatures between 580-640°C and LA-ICP-MS U/Pb ages of 87-94 Ma. This rutile generation may be related to the observed static formation of Na-clinopyroxene and Si-rich phengite rims, as well as the growth of lawsonite in late fractures. The latter paragenetic sequence has been previously interpreted as reflecting a long-term isobaric cooling that occurred at least until the end of the Cretaceous (ages in Angiboust et al., 2016).</p><p>While the latter observations point to a long-term cooling of the Zagros subduction thermal gradient down to 7°C/km during late Cretaceous times, this first report of an earlier melting event in the Zagros paleo-accretionary wedge indicates an abnormally high thermal gradient of 17-20°C/km. GPLATES paleogeographic reconstructions of the Tethyan realm evolution during Cretaceous times reveal the presence of a spreading ridge jump followed by the subduction of the formerly active ridge-segment between 105-115 Ma, which possibly left an imprint marked by the unusually hot gradient seen in Ashin amphibolites. The model further predicts the subduction of progressively aging oceanic lithosphere, possibly explaining the observed cooling of the subduction thermal regime.</p>


2021 ◽  
Author(s):  
Thomas Kress ◽  
Kateryna Che ◽  
Ludovica M. Epasto ◽  
Fanny Kozak ◽  
Gregory L. Olsen ◽  
...  

Abstract. We present a system for facilitated sample vitrification, melting, and transfer in dissolution dynamic nuclear polarization (DDNP) experiments. For DDNP, a sample is typically hyperpolarized at cryogenic temperatures before dissolution with hot solvent and transfer to a nuclear magnetic resonance (NMR) spectrometer for detection in the liquid state. The resulting signal enhancements can exceed four orders of magnitude. However, the sudden temperature jump from cryogenic temperatures close to 1 K to ambient conditions imposes a particular challenge. It is necessary to rapidly melt the sample to avoid a prohibitively fast decay of hyperpolarization. Here, we demonstrate a sample dissolution method that facilitates the temperature jump by eliminating the need to open the cryostat used to cool the sample. This is achieved by inserting the sample through an airlock in combination with a dedicated dissolution system that is inserted through the same airlock shortly before the melting event. The advantages are threefold: 1. The cryostat can be operated continuously at low temperatures. 2. The melting process is rapid as no pressurization steps of the cryostat are required. 3. Blockages of the dissolution system due to freezing of solvents during melting and transfer are minimized.


2021 ◽  
Author(s):  
Joshua M. Rosera ◽  
Sean P. Gaynor ◽  
Drew S. Coleman

Abstract Magmatism in northern Colorado beginning in the late Eocene is associated with the formation of Pb-Zn-Ag carbonate-replacement and polymetallic vein deposits, the onset of caldera-forming magmatism, and eventually, the formation of rift-related, F-rich Mo porphyries (“Climax-type” intrusions). We use high-precision U/Pb zircon geochronology to better evaluate the temporal framework of magmatism and mineralization in the region. Our results demonstrate that mineralization in the Leadville area occurred between 43.5 and 39.7 Ma and was followed by mesothermal mineralization in the Montezuma area at approximately 38.7 Ma. Mineralization is associated with a suite of approximately 43 to 39 Ma intermediate magmatic centers that extended from Twin Lakes through Montezuma. The oldest porphyries associated with F-rich Mo prospects and deposits (Middle Mountain; 36.45 Ma) intruded 900 kyr after the start of the ignimbrite flare-up in the region. Spatiotemporal analyses reveal that the pattern of magmatism shifted in orientation between 40 and 35 Ma. We propose a model wherein magmatism before 39 Ma was the result of fluids evolved from the subducted Farallon slab being focused through weak zones in the lithospheric mantle and into the lower crust. This was followed by a more diffuse and higher power melting event that corresponds to a distinct change in the spatial patterns of magmatism. Our data suggest that low-grade Mo porphyry deposits can form close in time to calderas. We hypothesize that the transition from subduction to extensional tectonics in the region was responsible for this more widespread melting and a distinct shift in the style of magmatic-hydrothermal mineralization.


2018 ◽  
Vol 83 (1) ◽  
pp. 123-135 ◽  
Author(s):  
Victor V. Sharygin

AbstractThe intergrowths of Fe-rich corundum + Al-rich hematite + spinel + hibonite have been found as an assemblage in a plagioclase-clinopyroxene rock (paralava, former hornfels) at the Hatrurim Basin, Hatrurim combustion metamorphic Formation. Most spinels show oriented exsolution structures and vary from (Mg0.75${\rm Fe}_{{\rm 0}{\rm. 25}}^{2 +} $)(Al1.80${\rm Fe}_{{\rm 0}{\rm. 20}}^{3 +} $)O4 (with exsolutions) to (Mg0.77${\rm Fe}_{{\rm 0}{\rm. 23}}^{2 +} $)(Al1.95${\rm Fe}_{{\rm 0}{\rm. 05}}^{3 +} $)O4 (homogeneous) indicating a tendency towards magnesioferrite and magnetite, and enrichment in NiO (up to 1.9 wt.%) and ZnO (up to 1.4 wt.%). Hibonite is Ti rich (TiO2 > 8 wt.%) and close to CaAl9Fe3+(Mg,Fe2+)TiO19. Corundum varies in Fe2O3 (4.2–11.8 wt.%). Hematite is also inhomogeneous and contains oriented exsolution structures of corundum. It shows variable concentrations of TiO2 (0.7–5.6 wt.%), Al2O3 (0.7–8.6 wt.%), Cr2O3 (0.2–1.5 wt.%), V2O3 (0.1–1.0 wt.%) and MgO (0.3–2.0 wt.%). Crystallization of this specific assemblage is assumed to be at 1000–1200°C using evaluations for the corundum hematite pair with reference to published experimental data. The active role of superheated oxidised volatiles is suggested during both crystallisation of this corundum-bearing association and host-rock transformation (melting event for hornfels → paralava).


RSC Advances ◽  
2018 ◽  
Vol 8 (61) ◽  
pp. 35257-35262
Author(s):  
WenQiang Xu

We observed a novel melting scenario by confocal microscopy, which we call a ‘sudden-melting event’, during the freezing of super-cooled water inside a millimeter-sized copper well.


2015 ◽  
Vol 58 (1) ◽  
pp. 58-70 ◽  
Author(s):  
Ji-Yao Tu ◽  
Jian-Qing Ji ◽  
Jun-Feng Gong ◽  
Quan-Ren Yan ◽  
Bao-Fu Han

2015 ◽  
Vol 186 (2-3) ◽  
pp. 63-91 ◽  
Author(s):  
Romain Augier ◽  
Flavien Choulet ◽  
Michel Faure ◽  
Paul Turrillot

AbstractBy drastically reducing the bulk strength of crustal materials, partial-melting is one of the main parameter controlling the rheological behaviour of the continental crust. With more than ca. 50% of the outcropping surface characterised by migmatites and granites, the coastal South Armorican domain, offers an opportunity to study deep-orogenic processes and more particularly, to understand the role of partial-melting for the late-evolution of the Variscan belt. To date, time-constraints are scarce hindering the understanding of this crucial stage in the Variscan belt evolution. This paper provides 29 new U-Th/Pb chemical ages on monazite collected over five sampling areas consisting in migmatite domes and late regional classic plutons. Based on structural, textural and chemical criteria, three main U-Th/Pb age-groups are distinguished. The first group, settled at ca. 335–330 Ma concerns samples of restites and core-domains of the monazite crystals for most of the granite massifs. Its significance is ascribed to inherited crystallisation ages probably recording the crossing of prograde monazite forming reactions (i.e. metamorphic isograds) during increasing P-T conditions in an overall nappe-stacking context. The second group that clusters at ca. 325–320 Ma corresponds to newly formed monazite grains that crystallised from juvenile silicate melts. Ages of this group are interpreted as crystallisation ages of leucosomes after a major partial-melting event that affected the whole domain. The last ca. 320 Ma group corresponds to rim-domains of monazite crystals. It is interpreted as the emplacement age of most of the large-scale granite massifs and therefore fixes the end of the partial-melting event.The inception and drastic generalisation of partial-melting at peak-P conditions therefore coincides with a major change in the tectonic regime recorded at regional-scale. In the lights of these results, this implies that (1) either continuous stacking of continental crustal units, rich in radiogenic elements, led to an increase of temperature within the orogenic wedge provoking partial-melting, the resulting drop in the crustal strength inducing collapse and lateral expansion of the belt, or (2) a drastic change of the boundary conditions has induced hot asthenospheric upwelling which in turn led to coeval extension and partial-melting. At a more local scale, strain benefited of the low-strength of the magmatic bodies prior to complete crystallisation promoting intense strain localisation within the South Armorican domain large-scale laccoliths often referred to as synkinematic plutons.


2012 ◽  
Vol 4 (2) ◽  
pp. 1379-1410
Author(s):  
S. Bhattacharya ◽  
A. K. Chaudhary ◽  
A. K. Saw ◽  
P. Das ◽  
D. Chatterjee

Abstract. Granulite xenoliths preserve key geochemical and isotopic signatures of their mantle source regions. Mafic granulite and pyroxinite xenoliths within massif-type charnockitic rocks from the Eastern Ghats Belt have recently been reported by us. The mafic granulite xenoliths from the Chilka Lake granulite suite with abundant prograde biotite are geochemically akin to Oceanic Island Basalt (OIB). They can be distinguished from the hornblende-mafic granulite xenoliths with signatures of Arc-derived basalt occurring in the other suites of the Eastern Ghats Belt. These two groups of xenoliths in the Paleoproterozoic Eastern Ghats Province have quite distinct Nd-model ages- 1.9 Ga and 2.5 Ga respectively, which may be interpreted as their crustal residence ages. Strong positive Nb anomalies, indicating subducted oceanic crust in the source, LREE enrichment and strongly fractionated REE pattern are key geochemical signatures attesting to their origin as OIB-type magma. Also low Yb and Sc contents and high (La / Yb)N ratios can be attributed to melting in the presence of residual garnet and hence at great depths (> 80 km). The variable enrichment in radiogenic 87Sr, between 0.70052 and 0.71092 at 1.9 Ga and less radiogenic 143Nd between ε-1.54 and 7.46 are similar to those of the OIBs compared to MORBs. As OIBs commonly contain some recycled oceanic crust in their sources, we suggest that the residue of the oceanic crust from a previous melting event (~ 2.5 Ga) that produced the Arc-derived basalts (protoliths of hornblende-mafic granulite xenoliths) could have subducted to great depths and mechanically mixed with the mantle peridotite. A subsequent re-melting event of this mixed source might have occurred at ca. 1.9 Ga as testified by the crustal residence ages of the biotite-mafic granulite xenoliths of the Chilka Lake granulite suite.


Sign in / Sign up

Export Citation Format

Share Document