Relative sea-level history from the Lambert Glacier region, East Antarctica, and its relation to deglaciation and Holocene glacier readvance

2005 ◽  
Vol 63 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Elie Verleyen ◽  
Dominic A. Hodgson ◽  
Glenn A. Milne ◽  
Koen Sabbe ◽  
Wim Vyverman

We present a relative sea-level (RSL) history, constrained by AMS radiocarbon-dated marine–freshwater transitions in isolation basins from a site adjacent to the Lambert Glacier, East Antarctica. The RSL data suggest an initial ice retreat between c. 15,370 and 12,660 cal yr B.P Within this period, meltwater pulse IA (mwp IA, between c. 14,600–14,200 and 14,100–13,700 cal yr B.P.) occurred; an exceptionally large ice melting event, inferred from far-field sea-level records. The RSL curve shows a pronounced highstand of approximately 8 m between c. 7570–7270 and 7250–6950 cal yr B.P. that is consistent with the timing of the RSL highstand in the nearby Vestfold Hills. This is followed by a fall in RSL to the present. In contrast to previous findings, the isolation of the lakes in the Larsemann Hills postdates the isolation of lakes with similar sill heights in the Vestfold Hills. An increase in RSL fall during the late Holocene may record a decline in the rate of isostatic uplift in the Larsemann Hills between c. 7250–6950 and 2847–2509 cal yr B.P., that occurred in response to a documented mid-Holocene glacier readvance followed by a late-Holocene retreat.

2003 ◽  
Vol 60 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Antony J. Long ◽  
David H. Roberts ◽  
Morten Rasch

AbstractRelative sea level (RSL) data derived from isolation basins at Innaarsuit, a site on the south shores of the large marine embayment of Disko Bugt, West Greenland, record rapid RSL fall from the marine limit (ca. 108 m) at 10,300–9900 cal yr B.P. to reach the present sea level at 3500 cal yr B.P. Since 2000 cal yr B.P., RSL rose ca. 3 m to the present. When compared with data from elsewhere in Disko Bugt, our results suggest that the embayment was deglaciated later and more quickly than previously thought, at or slightly before 10,300 cal yr B.P. The northern part of Disko Bugt experienced less rebound (ca. 10 m at 6000 cal yr B.P.) compared with areas to the south. Submergence during the late Holocene supports a model of crustal down-warping as a result of renewed ice-sheet growth during the neoglacial. There is little evidence for west to east differences in crustal rebound across the southern shores of Disko Bugt.


2006 ◽  
Vol 66 (2) ◽  
pp. 288-302 ◽  
Author(s):  
W. Roland Gehrels ◽  
Katie Szkornik ◽  
Jesper Bartholdy ◽  
Jason R. Kirby ◽  
Sarah L. Bradley ◽  
...  

AbstractCores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Miriam C. Jones ◽  
G. Lynn Wingard ◽  
Bethany Stackhouse ◽  
Katherine Keller ◽  
Debra Willard ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anders Schomacker ◽  
Wesley R. Farnsworth ◽  
Ólafur Ingólfsson ◽  
Lis Allaart ◽  
Lena Håkansson ◽  
...  

2020 ◽  
pp. 1-24
Author(s):  
Shubhra Sharma ◽  
Gaurav Chauhan ◽  
Anil Dutt Shukla ◽  
Romi Nambiar ◽  
Ravi Bhushan ◽  
...  

Abstract The relict intertidal deposits from the Kharod River Estuary, Gulf of Kachchh, and the distal end of Kori Creek are used to infer the Mid- to Late Holocene relative sea-level (RSL) change in western India. Employing sedimentology, geochemistry, palynology, ichnology, and optical and radiocarbon dating, the study suggests the dominance of fluvial activity between 16.5 ± 1.6 and 9.9 ± 0.7 ka. After ~7 ka (7.3 ± 0.4, 6.8 ± 0.5 ka), the sea level showed a positive tendency until 4.7 ± 0.2 ka. The tectonically corrected Mid-Holocene RSL change is estimated as 1.45 ± 0.33 m between ~7 and ~5 ka. The study suggests that the Mid-Holocene RSL high was due to the meltwater contribution from the Himalayan cryosphere, with subordinate contribution from glacio-isostatic adjustment and crustal subsidence. The Late Holocene tectonically corrected RSL change at ~1 ka (1.1 ± 0.1 ka and 1045 ± 175 cal yr BP) is estimated as 0.53 ± 0.43 m. This is ascribed to monsoon wind-driven tidal ingression that might have affected the tidal amplitude positively. The study suggests that the Mid-Holocene RSL change did not play a deterministic role in the abandonment of the Harappan coastal settlements.


1990 ◽  
Vol 34 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Joseph F. Donoghue

AbstractTrends are discernible in the estimates of late Holocene rates of sedimentation and sea-level rise for the Chesapeake Bay. During most of the Holocene Epoch sedimentation rates and relative sea-level rise were equal, within the limits of measurement, at approximately 1 mm yr−1. Sedimentation rates measured over the past century, however, are nearly an order of magnitude higher, while the rate of relative sea-level rise for the Chesapeake Bay now averages 3.3 mm yr−1, as measured on long-term tide gauge records. When the acceleration in these rates occurred is uncertain, but it appears to have been confined to the past millennium, and probably to the past few centuries. The rapid sedimentation rates recorded during historic time may be a temporary disequilibrium that has resulted from a recent acceleration in the rate of relative sea-level rise.


Sign in / Sign up

Export Citation Format

Share Document