The 1.1-Ga Midcontinent Rift System, central North America: sedimentology of two deep boreholes, Lake Superior region

2002 ◽  
Vol 147 (1-2) ◽  
pp. 13-36 ◽  
Author(s):  
Richard W Ojakangas ◽  
Albert B Dickas
Author(s):  
Pete Hollings ◽  
Mark Smyk ◽  
Wouter Bleeker ◽  
Michael A. Hamilton ◽  
Robert Cundari ◽  
...  

The Midcontinent Rift System of North America is a ~1.1 Ga large igneous province comprising mainly flood basalts and intrusive rocks. We present new data for the Pillar Lake Volcanics and Inspiration Sill from the northern edge of the Midcontinent Rift in the northwestern Nipigon Embayment. The Pillar Lake Volcanics comprise a ~20-40 m-thick, flat-lying sequence of mafic pillowed and massive flows, pillowed flow breccia, and hyaloclastite breccia. They are characterized by SiO2 of 52-54 wt%, TiO2 of 1.2 to 1.3 wt% and K2O of 0.9 to 1.1 wt%. They are LREE-enriched, with La/Smn of 3.0 to 4.4 with fractionated HREE (Gd/Ybn = 1.4 to 1.7). The Inspiration diabase sill is < 50 m thick and is in direct contact with the underlying Pillar Lake Volcanics. Baddeleyite and zircon data from the Inspiration Sill yield a combined U-Pb upper intercept age of 1105.6 ± 1.6 Ma. The Inspiration Sill is characterized by uniform SiO2 of 52 to 53 wt%, TiO2 of 1.1 to 1.2 and K2O of 0.9 to 1.2 wt%. Inspiration Sill samples are LREE enriched with La/Smn of 3.2 to 3.3 and fractionated HREE of (Gd/Ybn = 1.6). The Pillar Lake Volcanics are at least 1120 Ma, and perhaps as old as 1130 Ma and represent an early, thin, and restricted mafic volcanic sequence, largely preserved below the younger Inspiration Sill. The Pillar Lake Volcanics and Inspiration Sill display a marked geochemical similarity, suggesting that they may represent magmatism associated with the earliest stages of Midcontinent rifting.


1994 ◽  
Vol 31 (4) ◽  
pp. 709-720 ◽  
Author(s):  
Donald C. Adams ◽  
G. Randy Keller

The Midcontinent Rift System forms one of the most prominent gravity features in North America. The recognized geophysical anomaly extends in an arc from southern Oklahoma to Lake Superior and then into southern Michigan. The Midcontinent Rift System was active between 1185–1010 Ma, as indicated in the Lake Superior region by age determinations on intrusive igneous rocks. We suggest that the period of formation of the Midcontinent Rift was also a time of extensive igneous activity in Texas and New Mexico. This activity is represented by intrusions beneath the Central basin platform (Texas and New Mexico), intrusions which crop out at the Pajarito Mountain in the Sacramento Mountains (New Mexico), a basaltic debris flow in the Franklin Mountains (Texas), basalt flows at Van Horn (Texas), and the Crosbyton geophysical anomaly (east of Lubbock, Texas). These bodies and other bodies located by geophysical anomalies and wells drilled into mafic Precambrian rocks may be related to the Midcontinent Rift System. Alternatively this magmatism could be related to Grenville age tectonics in Texas. The mafic igneous rocks in this area form a 530 km diameter Middle Proterozoic igneous province, which formed between 1070 and 1220 Ma. Comparison of the Midcontinent Rift System and its extensions proposed here with the Mesozoic and Cenozoic African rift systems indicates that these features are of comparable scale and complexity.


1997 ◽  
Vol 34 (4) ◽  
pp. 476-488 ◽  
Author(s):  
D. W. Davis ◽  
J. C. Green

Volcanism in the Midcontinent rift system lasted between 1108 and 1086 Ma. Rates of flood-basalt eruption and subsidence in the western Lake Superior region appear to have been greatest at the beginning of recorded activity (estimated 5 km/Ma subsidence rate at 1108 Ma) and rapidly waned over a period of 1–3 Ma during a magnetically reversed period. The age of the paleomagnetic polarity reversal is now constrained to be between 1105 ± 2 and 1102 ± 2 Ma. A resurgence of intense volcanism began at 1100 ± 2 Ma in the North Shore Volcanic Group and lasted until 1097 ± 2 Ma. This group contains a ca. 7 Ma time gap between magnetically reversed and normal volcanic sequences. A similar disconformity appears to exist in the upper part of the Powder Mill Group. The average subsidence rate during this period was approximately 3.7 km/Ma. Latitude variations measured from paleomagnetism on dated sequences indicate that the North American plate was drifting at a minimum rate of 22 cm/year during the early history of the Midcontinent rift. An abrupt slowdown to approximately 8 cm/year occurred at ca. 1095 Ma. These data support a mantle-plume origin for Midcontinent rift volcanism, with the plume head attached to and drifting with the continental lithosphere. Resurgence of flood-basalt magmatism at 1100 Ma may have been caused by extension of the superheated lithosphere following continental collision within the Grenville Orogen to the east.


Sign in / Sign up

Export Citation Format

Share Document