Climatically driven sedimentary cycles in the Late Miocene sediments of the Pannonian Basin, Hungary

1997 ◽  
Vol 282 (1-4) ◽  
pp. 257-276 ◽  
Author(s):  
E. Juhász ◽  
L.Ó. Kovács ◽  
P. Müller ◽  
Á. Tóth-Makk ◽  
L. Phillips ◽  
...  
2006 ◽  
pp. 89-100 ◽  
Author(s):  
Ljupko Rundic

About 11.5 million years ago, a tectonic uplift of the Eastern and Western Carpathians separated the Pannonian Basin from the rest of the Paratethys. This orogenesis event caused an unconformity between the Sarmatian brackish sediments and the Pannonian lake-sea deposits. More than 6 Ma later, in these parts of the Paratethys, changes in the geographic framework, hydrological conditions and brackish - caspibrackish water chemistry led to the disappearance of restricted marine forms of life. A few euryhaline and marginal marine species survived this environmental change. Among the ostracodes, some originally freshwater taxa, such as Candoninae, entered the lake-sea. Many lineages show gradual morphological changes. The older, low diversity ostracode fauna from the Lower Pannonian dispersed to the endemic species and genera during the Upper Pannonian. This interval is assigned as the "bloom time" for many ostracodes, both qualitatively and quantitatively. This time sequence is the last appearances of genera such as Aurila Cytheridea, Propontoniella, etc. and simultaneously, the first appearances for many new genera, such as Zalanyiella, Serbiella, Camptocypria Sinegubiella etc. During the Pontian, migration processes were present. Therefore, it can be supposed that many eastern Paratethyan forms have Pannonian origin.


2018 ◽  
Vol 6 (1) ◽  
pp. SB111-SB122 ◽  
Author(s):  
Ferenc Horváth ◽  
Ivan Dulić ◽  
Alan Vranković ◽  
Balázs Koroknai ◽  
Tamás Tóth ◽  
...  

The Pannonian Basin is an intraorogenic extensional region floored by a complex system of Alpine orogenic terranes and oceanic suture zones. Its formation dates back to the beginning of the Miocene, and initial fluvial-lacustrine deposits pass into shallow to open marine strata, including a large amount of calc-alkaline volcanic materials erupted during the culmination of the synrift phase. The onset of the postrift phase occurred during the Late Miocene, when the basin became isolated and a large Pannonian lake developed. Early lacustrine marls are overlain by turbiditic sandstones and silts related to a progradational shelf slope and a delta plain sequence passing upward into alluvial plain deposits and eolian sands. A remarkable nonconformity at the top of lacustrine strata associated with a significant (4–7 my) time gap at large parts of the basin documents a neotectonic phase of activity, manifested by regional strike-slip faulting and kilometer-scale differential vertical movements, with erosion and redeposition. Subsidence and burial history modeling indicate that Middle and Late Miocene, fairly organic-rich marine and lacustrine (respectively) shales entered into the oil-generation window at about the beginning of the Pliocene in depocenters deeper than 2.5–3 km, and even reached the wet to dry gas-generation zone at depths exceeding 4–4.5 km. Migration out of these kitchens has been going on since the latest Miocene toward basement highs, where anticlines and flower structures offered adequate trapping conditions for hydrocarbons. We argue that compaction of thick sedimentary piles, in addition to neotectonic structures, has also been important in trap formation within the Pannonian Basin.


Author(s):  
G. Pogacsas ◽  
B. Bardocz ◽  
A. Szabo ◽  
E. Rosta ◽  
R. Mattick ◽  
...  

2000 ◽  
Vol 177 (1-2) ◽  
pp. 9-22 ◽  
Author(s):  
H. Abdul Aziz ◽  
F. Hilgen ◽  
W. Krijgsman ◽  
E. Sanz ◽  
J.P. Calvo

2011 ◽  
Vol 62 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Wieske Paulissen ◽  
Stefan Luthi ◽  
Patrick Grunert ◽  
Stjepan Ćorić ◽  
Mathias Harzhauser

Integrated high-resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna BasinIn order to determine the relative contributions of tectonics and eustasy to the sedimentary infill of the Vienna Basin a high-resolution stratigraphic record of a Middle to Late Miocene sedimentary sequence was established for a well (Spannberg-21) in the central part of the Vienna Basin. The well is located on an intrabasinal high, the Spannberg Ridge, a location that is relatively protected from local depocentre shifts. Downhole magnetostratigraphic measurements and biostratigraphical analysis form the basis for the chronostratigraphic framework. Temporal gaps in the sedimentary sequence were quantified from seismic data, well correlations and high-resolution electrical borehole images. Stratigraphic control with this integrated approach was good in the Sarmatian and Pannonian, but difficult in the Badenian. The resulting sedimentation rates show an increase towards the Upper Sarmatian from 0.43 m/kyr to > 1.2 m/kyr, followed by a decrease to relatively constant values around 0.3 m/kyr in the Pannonian. The sequence reflects the creation of accommodation space during the pull-apart phase of the basin and the subsequent slowing of the tectonic activity. The retreat of the Paratethys from the North Alpine Foreland Basin during the Early Sarmatian temporarily increased the influx of coarsergrained sediment, but eventually the basin acted mostly as a by-pass zone of sediment towards the Pannonian Basin. At a finer scale, the sequence exhibits correlations with global eustasy indicators, notably during the Sarmatian, the time of greatest basin subsidence and full connectivity with the Paratethyan system. In the Pannonian the eustatic signals become weaker due to an increased isolation of the Vienna Basin from Lake Pannon.


2014 ◽  
Vol 104 (8) ◽  
pp. 2007-2032 ◽  
Author(s):  
Szabolcs Harangi ◽  
M. Éva Jankovics ◽  
Tamás Sági ◽  
Balázs Kiss ◽  
Réka Lukács ◽  
...  

2005 ◽  
Vol 48 (3) ◽  
pp. 235-257 ◽  
Author(s):  
Orsolya Sztanó ◽  
Csaba Krézsek ◽  
Imre Magyar ◽  
Ferenc Wanek ◽  
Györgyi Juhász

Sign in / Sign up

Export Citation Format

Share Document