Overview of geologic evolution and hydrocarbon generation of the Pannonian Basin

2018 ◽  
Vol 6 (1) ◽  
pp. SB111-SB122 ◽  
Author(s):  
Ferenc Horváth ◽  
Ivan Dulić ◽  
Alan Vranković ◽  
Balázs Koroknai ◽  
Tamás Tóth ◽  
...  

The Pannonian Basin is an intraorogenic extensional region floored by a complex system of Alpine orogenic terranes and oceanic suture zones. Its formation dates back to the beginning of the Miocene, and initial fluvial-lacustrine deposits pass into shallow to open marine strata, including a large amount of calc-alkaline volcanic materials erupted during the culmination of the synrift phase. The onset of the postrift phase occurred during the Late Miocene, when the basin became isolated and a large Pannonian lake developed. Early lacustrine marls are overlain by turbiditic sandstones and silts related to a progradational shelf slope and a delta plain sequence passing upward into alluvial plain deposits and eolian sands. A remarkable nonconformity at the top of lacustrine strata associated with a significant (4–7 my) time gap at large parts of the basin documents a neotectonic phase of activity, manifested by regional strike-slip faulting and kilometer-scale differential vertical movements, with erosion and redeposition. Subsidence and burial history modeling indicate that Middle and Late Miocene, fairly organic-rich marine and lacustrine (respectively) shales entered into the oil-generation window at about the beginning of the Pliocene in depocenters deeper than 2.5–3 km, and even reached the wet to dry gas-generation zone at depths exceeding 4–4.5 km. Migration out of these kitchens has been going on since the latest Miocene toward basement highs, where anticlines and flower structures offered adequate trapping conditions for hydrocarbons. We argue that compaction of thick sedimentary piles, in addition to neotectonic structures, has also been important in trap formation within the Pannonian Basin.

2020 ◽  
Vol 10 (4) ◽  
pp. 95-120
Author(s):  
Rzger Abdulkarim Abdula

Burial history, thermal maturity, and timing of hydrocarbon generation were modeled for five key source-rock horizons at five locations in Northern Iraq. Constructed burial-history locations from east to west in the region are: Taq Taq-1; Qara Chugh-2; Zab-1; Guwair-2; and Shaikhan-2 wells. Generally, the thermal maturity status of the burial history sites based on increasing thermal maturity is Shaikhan-2 < Zab-1 < Guwair-2 < Qara Chugh-2 < Taq Taq-1. In well Qara Chugh-2, oil generation from Type-IIS kerogen in Geli Khana Formation started in the Late Cretaceous. Gas generation occurred at Qara Chugh-2 from Geli Khana Formation in the Late Miocene. The Kurra Chine Formation entered oil generation window at Guwair-2 and Shaikhan-2 at 64 Ma and 46 Ma, respectively. At Zab-1, the Baluti Formation started to generate gas at 120 Ma. The Butmah /Sarki reached peak oil generation at 45 Ma at Taq Taq-1. The main source rock in the area, Sargelu Formation started to generate oil at 47, 51, 33, 28, and 28 Ma at Taq Taq-1, Guwair-2, Shaikhan-2, Qara Chugh-2, and Zab-1, respectively. The results of the models demonstrated that peak petroleum generation from the Jurassic oil- and gas-prone source rocks in the most profound parts of the studied area occurred from Late Cretaceous to Middle Oligocene. At all localities, the Sargelu Formation is still within the oil window apart from Taq Taq-1 and Qara Chugh-2 where it is in the oil cracking and gas generation phase.


2011 ◽  
Vol 62 (6) ◽  
pp. 519-534 ◽  
Author(s):  
Michal Kováč ◽  
Rastislav Synak ◽  
Klement Fordinál ◽  
Peter Joniak ◽  
Csaba Tóth ◽  
...  

Late Miocene and Pliocene history of the Danube Basin: inferred from development of depositional systems and timing of sedimentary facies changesThe development of the northern Danube Basin (nDB) was closely related to the Late Miocene geodynamic evolution of the Pannonian Basin System. It started with a wide rifting which led to subsidence of several basin depocenters which were gradually filled during the Late Miocene and Early Pliocene. In the Late Pliocene the subsidence continued only in the basin's central part, while the northern marginal zone suffered inversion and the uplifted sedimentary fill began to be eroded. Individual stages of the basin development are well recorded in its sedimentary succession, where at least three great tectono-sedimentary cycles were documented. Firstly, a lacustrine cycle containing Lower, Middle and lowermost Upper Pannonian sediments (A-F Zones;sensuPapp 1951) deposited in the time span 11.6-8.9 Ma and is represented in the nDB in Slovakia by the Ivanka and Beladice Formations. In the Danube Basin of the southern part in Hungary, where the formations are defined by the appearance of sedimentary facies in time and space, the equivalents are: (1) the deep-water setting marls, clays and sandy turbidites of the Endrod and Szolnok Formations leading to the overlying strata deposits of the basin paleoslope or delta-slope represented by the Algyő Formation, and (2) the final shallow-water setting deposits of marshes, lagoons and a coastal and delta plain composed of clays, sands and coal seams, represented by the Újfalu Formation. The second tectono-sedimentary cycle was deposited in an alluvial environment and it comprises the Upper Pannonian (G and H Zones;sensuPapp 1951) and Lower Pliocene sediments dated 8.9-4.1? Ma. The cycle is represented in the nDB, by the Volkovce Formation and in the southern part by the Zagyva Formation in Hungary. The sedimentary environment is characterized by a wide range of facies from fluvial, deltaic and ephemeral lake to marshes. The third tectono-sedimentary cycle comprises the Upper Pliocene sediments. In Slovakia these are represented by the Kolárovo Formation dated 4.1-2.6 Ma. The formation contains material of weathering crust preserved in fissures of Mesozoic carbonates, diluvial deposits and sediments of the alluvial environment.


2012 ◽  
Vol 91 (4) ◽  
pp. 535-554 ◽  
Author(s):  
R. Abdul Fattah ◽  
J.M. Verweij ◽  
N. Witmans ◽  
J.H. ten Veen

Abstract3D basin modelling is used to investigate the history of maturation and hydrocarbon generation on the main platforms in the northwestern part of the offshore area of the Netherlands. The study area covers the Cleaverbank and Elbow Spit Platforms. Recently compiled maps and data are used to build the input geological model. An updated and refined palaeo water depth curve and newly refined sediment water interface temperatures (SWIT) are used in the simulation. Basal heat flow is calculated using tectonic models. Two main source rock intervals are defined in the model, Westphalian coal seams and pre-Westphalian shales, which include Namurian and Dinantian successions. The modelling shows that the pre-Westphalian source rocks entered the hydrocarbon generation window in the Late Carboniferous. In the southern and central parts of the study area, the Namurian started producing gas in the Permian. In the north, the Dinantian source rocks appear to be immature. Lower Westphalian sediments started generating gas during the Upper Triassic. Gas generation from Westphalian coal seams increased during the Paleogene and continues in present-day. This late generation of gas from Westphalian coal seams is a likely source for gas accumulations in the area.Westphalian coals might have produced early nitrogen prior to or during the main gas generation occurrence in the Paleogene. Namurian shales may be a source of late nitrogen after reaching maximum gas generating phase in the Triassic. Temperatures reached during the Mid Jurassic were sufficiently high to allow the release of non-organic nitrogen from Namurian shales.


2016 ◽  
Vol 67 (6) ◽  
pp. 525-542 ◽  
Author(s):  
Orsolya Sztanó ◽  
Michal Kováč ◽  
Imre Magyar ◽  
Michal Šujan ◽  
László Fodor ◽  
...  

AbstractThe Danube / Kisalföld Basin is the north-western sub-basin of the Pannonian Basin System. The lithostratigraphic subdivision of the several-km-thick Upper Miocene to Pliocene sedimentary succession related to Lake Pannon has been developed independently in Slovakia and Hungary. A study of the sedimentary formations across the entire basin led us to claim that these formations are identical or similar between the two basin parts to such an extent that their correlation is indeed a matter of nomenclature only. Nemčiňany corresponds to the Kálla Formation, representing locally derived coarse clastics along the basin margins (11- 9.5 Ma). The deep lacustrine sediments are collectively designated the Ivanka Formation in Slovakia, while in Hungary they are subdivided into Szák (fine-grained transgressive deposits above basement highs, 10.5 - 8.9 Ma), Endrőd (deep lacustrine marls, 11.6 -10 Ma), Szolnok (turbidites, 10.5 - 9.2 Ma) and Algyő Formations (fine-grained slope deposits, 10 - 9 Ma). The Beladice Formation represents shallow lacustrine deltaic deposits, fully corresponding to Újfalu (10.5 - 8.7 Ma). The overlying fluvial deposits are the Volkovce and Zagyva Formations (10 - 6 Ma). The synoptic description and characterization of these sediments offer a basin-wide insight into the development of the basin during the Late Miocene. The turbidite systems, the slope, the overlying deltaic and fluvial systems are all genetically related and are coeval at any time slice after the regression of Lake Pannon initiated about 10 Ma ago. All these formations get younger towards the S, SE as the progradation of the shelf-slope went on. The basin got filled up to lake level by 8.7 Ma, since then fluvial deposition dominated.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Taotao Yan ◽  
Shan He ◽  
Yadong Bai ◽  
Zhiyong He ◽  
Dameng Liu ◽  
...  

Commercial exploration and exploitation of coalbed methane (CBM) in Gujiao coalbed methane (CBM) field, Xishan coalfield, have rapidly increased in recent decades. The Gujiao CBM field has shown strong gas distribution heterogeneity, low gas content, and wide distribution of wells with low production. To better understand the geological controlling mechanism on gas distribution heterogeneity, the coal reservoir evolution history and CBM accumulation process have been studied on the base of numerical simulation work. The burial history of coal reservoir can be classified into six stages: shallowly buried stage; deeply buried stage; uplifting stage; short-term tectonic subsidence stage; large-scale uplifting stage; and sustaining uplifting and structural inversion stage. Mostly, coal seams have experienced two-time thermal metamorphisms with twice hydrocarbon-generation processes in this area, whereas in the southwest part, the coal seams in there suffered three-time thermal metamorphisms and hydrocarbon-generation processes. The critical tectonic events of the Indosinian, Yanshanian, and Himalayan orogenies affect different stages of the CBM reservoir accumulation evolution process. The Indosinian orogeny mainly controls the primary CBM generation. The Yanshanian orogeny dominates the second and third gas generation and migration processes. The Himalayan orogeny mainly affects the gas dissipation process and current CBM distribution heterogeneity.


2006 ◽  
Vol 46 (1) ◽  
pp. 343 ◽  
Author(s):  
J. J. Draper ◽  
C.J. Boreham

Methane is present in all coals, but a number of geological factors influence the potential economic concentration of gas. The key factors are (1) depositional environment, (2) tectonic and structural setting, (3) rank and gas generation, (4) gas content, (5) permeability, and (6) hydrogeology. Commercial coal seam gas production in Queensland has been entirely from the Permian coals of the Bowen Basin, but the Jurassic coals of the Surat and Clarence-Moreton basins are poised to deliver commercial gas volumes.Depositional environments range from fluvial to delta plain to paralic and marginal marine—coals in the Bowen Basin are laterally more continuous than those in the Surat and Clarence-Moreton basins. The tectonic and structural settings are important as they control the coal characteristics both in terms of deposition and burial history. The important coal seam gas seams were deposited in a foreland setting in the Bowen Basin and an intracratonic setting in the Surat and Clarence-Moreton basins. Both of these settings resulted in widespread coal deposition. The complex burial history of the Bowen Basin has resulted in a wide range of coal ranks and properties. Rank in the Bowen Basin coal seam gas fields varies from vitrinite reflectance of 0.55% to >1.1% Rv and from Rv 0.35-0.6% in the Surat and Clarence-Moreton basins in Queensland. High vitrinite coals provide optimal gas generation and cleat formation. The commercial gas fields and the prospective ones contain coals with >60% vitrinite.Gas generation in the Queensland basins is complex with isotopic studies indicating that biogenic gas, thermogenic gas and mixed gases are present. Biogenic processes occur at depths of up to a kilometre. Gas content is important, but lower gas contents can be economic if deliverability is good. Free gas is also present. Drilling and production techniques play an important role in making lower gas content coals viable. Since the Bowen and Surat basins are in a compressive regime, permeability becomes a defining parameter. Areas where the compression is offset by tensional forces provide the best chances for commercial coal seam gas production. Tensional setting such as anticline or structural hinges are important plays. Hydrodynamics control the production rate though water quality varies between the fields.


1982 ◽  
Vol 19 (2) ◽  
pp. 328-342 ◽  
Author(s):  
F. Monnier

Clay mineral transformations during burial are indicators of the degree of diagenesis of sediments. Diagenetic zonations in numerous wells of the Swiss molasse basin are defined by the disappearance of smectite and (or) the appearance of either corrensite or irregular 2:1 mixed layers. The maximum level attained in the thickest molasse sections corresponds to organic matter maturation suitable for hydrocarbon generation. Reconstructed on the basis of the clay mineral transformation data, a burial history of the basin is proposed.


Author(s):  
A., C. Prasetyo

Overpressure existence represents a geological hazard; therefore, an accurate pore pressure prediction is critical for well planning and drilling procedures, etc. Overpressure is a geological phenomenon usually generated by two mechanisms, loading (disequilibrium compaction) and unloading mechanisms (diagenesis and hydrocarbon generation) and they are all geological processes. This research was conducted based on analytical and descriptive methods integrated with well data including wireline log, laboratory test and well test data. This research was conducted based on quantitative estimate of pore pressures using the Eaton Method. The stages are determining shale intervals with GR logs, calculating vertical stress/overburden stress values, determining normal compaction trends, making cross plots of sonic logs against density logs, calculating geothermal gradients, analyzing hydrocarbon maturity, and calculating sedimentation rates with burial history. The research conducted an analysis method on the distribution of clay mineral composition to determine depositional environment and its relationship to overpressure. The wells include GAP-01, GAP-02, GAP-03, and GAP-04 which has an overpressure zone range at depth 8501-10988 ft. The pressure value within the 4 wells has a range between 4358-7451 Psi. Overpressure mechanism in the GAP field is caused by non-loading mechanism (clay mineral diagenesis and hydrocarbon maturation). Overpressure distribution is controlled by its stratigraphy. Therefore, it is possible overpressure is spread quite broadly, especially in the low morphology of the “GAP” Field. This relates to the delta depositional environment with thick shale. Based on clay minerals distribution, the northern part (GAP 02 & 03) has more clay mineral content compared to the south and this can be interpreted increasingly towards sea (low energy regime) and facies turned into pro-delta. Overpressure might be found shallower in the north than the south due to higher clay mineral content present to the north.


2019 ◽  
Vol 56 (4) ◽  
pp. 365-396
Author(s):  
Debra Higley ◽  
Catherine Enomoto

Nine 1D burial history models were built across the Appalachian basin to reconstruct the burial, erosional, and thermal maturation histories of contained petroleum source rocks. Models were calibrated to measured downhole temperatures, and to vitrinite reflectance (% Ro) data for Devonian through Pennsylvanian source rocks. The highest levels of thermal maturity in petroleum source rocks are within and proximal to the Rome trough in the deep basin, which are also within the confluence of increased structural complexity and associated faulting, overpressured Devonian shales, and thick intervals of salt in the underlying Silurian Salina Group. Models incorporate minor erosion from 260 to 140 million years ago (Ma) that allows for extended burial and heating of underlying strata. Two modeled times of increased erosion, from 140 to 90 Ma and 23 to 5.3 Ma, are followed by lesser erosion from 5.3 Ma to Present. Absent strata are mainly Permian shales and sandstone; thickness of these removed layers increased from about 6200 ft (1890 m) west of the Rome trough to as much as 9650 ft (2940 m) within the trough. The onset of oil generation based on 0.6% Ro ranges from 387 to 306 Ma for the Utica Shale, and 359 to 282 Ma for Middle Devonian to basal Mississippian shales. The ~1.2% Ro onset of wet gas generation ranges from 360 to 281 Ma in the Utica Shale, and 298 to 150 Ma for Devonian to lowermost Mississippian shales.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2679
Author(s):  
Yuying Zhang ◽  
Shu Jiang ◽  
Zhiliang He ◽  
Yuchao Li ◽  
Dianshi Xiao ◽  
...  

In order to analyze the main factors controlling shale gas accumulation and to predict the potential zone for shale gas exploration, the heterogeneous characteristics of the source rock and reservoir of the Wufeng-Longmaxi Formation in Sichuan Basin were discussed in detail, based on the data of petrology, sedimentology, reservoir physical properties and gas content. On this basis, the effect of coupling between source rock and reservoir on shale gas generation and reservation has been analyzed. The Wufeng-Longmaxi Formation black shale in the Sichuan Basin has been divided into 5 types of lithofacies, i.e., carbonaceous siliceous shale, carbonaceous argillaceous shale, composite shale, silty shale, and argillaceous shale, and 4 types of sedimentary microfacies, i.e., carbonaceous siliceous deep shelf, carbonaceous argillaceous deep shelf, silty argillaceous shallow shelf, and argillaceous shallow shelf. The total organic carbon (TOC) content ranged from 0.5% to 6.0% (mean 2.54%), which gradually decreased vertically from the bottom to the top and was controlled by the oxygen content of the bottom water. Most of the organic matter was sapropel in a high-over thermal maturity. The shale reservoir of Wufeng-Longmaxi Formation was characterized by low porosity and low permeability. Pore types were mainly <10 nm organic pores, especially in the lower member of the Longmaxi Formation. The size of organic pores increased sharply in the upper member of the Longmaxi Formation. The volumes of methane adsorption were between 1.431 m3/t and 3.719 m3/t, and the total gas contents were between 0.44 m3/t and 5.19 m3/t, both of which gradually decreased from the bottom upwards. Shale with a high TOC content in the carbonaceous siliceous/argillaceous deep shelf is considered to have significant potential for hydrocarbon generation and storage capacity for gas preservation, providing favorable conditions of the source rock and reservoir for shale gas.


Sign in / Sign up

Export Citation Format

Share Document