Monte carlo simulation of spatially distributed beams in electron-beam lithography

Vacuum ◽  
1976 ◽  
Vol 26 (4-5) ◽  
pp. 220
2011 ◽  
Vol 497 ◽  
pp. 127-132 ◽  
Author(s):  
Hui Zhang ◽  
Takuro Tamura ◽  
You Yin ◽  
Sumio Hosaka

We have studied on theoretical electron energy deposition in thin resist layer on Si substrate for electron beam lithography. We made Monte Carlo simulation to calculate the energy distribution and to consider formation of nanometer sized pattern regarding electron energy, resist thickness and resist type. The energy distribution in 100 nm-thick resist on Si substrate were calculated for small pattern. The calculations show that 4 nm-wide pattern will be formed when resist thickness is less than 30 nm. Furthermore, a negative resist is more suitable than positive resist by the estimation of a shape of the energy distribution.


Author(s):  
TJ. Stark ◽  
Z. J. Radzimski ◽  
P.A. Peterson ◽  
D.P. Griffis ◽  
P. E. Russell

Recent advances in electron optical systems which allow reduction of electron beam voltage while maintaining sufficiently small spot size and high current density have opened new possibilities for electron beam lithography. The main advantage of low beam energy lithography is a reduction of backscattered electrons and, consequently, the reduction of problems associated with proximity effects. The other advantages of this technique are reduction in the dose required to modify a resist and minimization of substrate damage caused by energetic electrons. Proper electron energy must be chosen at which the beam deposits its energy mainly within the resist film with minimal penetration into the substrate. Monte Carlo simulation programs have been used widely to predict the scattering interactions and thus the area of proximity effects. Rutherford cross section for angle scattering and Bethe energy loss have been commonly used in Monte Carlo modeling. However, low energy lithography (<5keV) requires a more accurate approach based on Mott cross sections for scattering and a more precise formula for energy loss replacing the Bethe law which is invalid below 1 keV energy.


2014 ◽  
Vol 121 ◽  
pp. 142-146 ◽  
Author(s):  
Hui Zhang ◽  
Miftakhul Huda ◽  
Takuya Komori ◽  
Yulong Zhang ◽  
You Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document